
	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

How to Create a Custom Live CD for Secure
Remote Incident Handling in the Enterprise

Abstract	

This paper will document a process to create a custom Live CD for secure remote

incident handling on Windows and Linux systems. The process will include how to

configure SSH for remote access to the Live CD even when running behind a NAT device.

The combination of customization and secure remote access will make this process

valuable to incident handlers working in enterprise environments with limited remote IT

support.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 2	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Table	
 of	
 Contents	

Abstract ...1	

1.	
 Introduction ..5	

2.	
 Making	
 Your	
 Own	
 Customized	
 Debian	
 GNU/Linux	
 Based	
 System ..7	

2.1.	
 The	
 Development	
 Environment ..7	

2.2.	
 Making	
 Your	
 Dream	
 Incident	
 Handling	
 System ...9	

2.3.	
 Hardening	
 the	
 Base	
 Install...11	

2.3.1.	
 Managing	
 Root	
 Access	
 with	
 Sudo..11	

2.4.	
 Randomizing	
 the	
 Handler	
 Password	
 at	
 Boot	
 Time ..12	

2.5.	
 Installing	
 Incident	
 Handling	
 Tools	
 in	
 Your	
 Development	
 System14	

2.5.1.	
 Rootkit	
 Hunter	
 and	
 Chkrootkit ..14	

2.5.2.	
 Perl	
 Scripts	
 for	
 Windows	
 Forensic	
 Analysis ...14	

2.6.	
 Using	
 NX	
 Server/Client	
 for	
 Remote	
 GUI	
 Access	
 over	
 SSH ...15	

2.7.	
 Installing	
 the	
 X	
 Server	
 and	
 Window	
 Manager ...18	

3.	
 Using	
 SSH	
 for	
 Secure	
 Remote	
 Access ...21	

3.1.	
 Creating	
 SSH	
 Keys ..21	

3.2.	
 Remote	
 Access:	
 The	
 Back	
 End	
 Mothership ...22	

3.3.	
 SSH	
 Remote	
 Port	
 Forwarding ..23	

3.3.1.	
 SSH	
 Local	
 Port	
 Forwarding:	
 A	
 Review..23	

3.3.2.	
 SSH	
 Remote	
 Port	
 Fowarding..23	

3.4.	
 Remote	
 GUI	
 Access	
 with	
 NX	
 Server	
 and	
 Port	
 Forwarding...25	

4.	
 Building	
 the	
 Mothership...26	

4.1.	
 Hardening	
 the	
 Handler	
 Account	
 on	
 the	
 Mothership...27	

4.2.	
 Creating	
 the	
 Handler	
 Account's	
 Home	
 Directory ..28	

4.3.	
 Using	
 SSH	
 to	
 chroot	
 the	
 Handler	
 Account...30	

4.4.	
 Setting	
 Up	
 Syslog-­‐ng	
 for	
 Remote	
 Logging	
 Between	
 RIHCD	
 and	
 Mothership32	

5.	
 Getting	
 RIHCD	
 to	
 Phone	
 Home...35	

5.1.	
 Automating	
 SSH	
 Access	
 at	
 Startup ..35	

5.2.	
 Automatically	
 Pulling	
 Down	
 New	
 Files	
 from	
 the	
 Mothership	
 at	
 Boot	
 Time..................37	

6.	
 What	
 is	
 Knoppix? ..39	

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 3	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

6.1.	
 Anatomy	
 of	
 a	
 Knoppix	
 CD:...39	

6.2.	
 Overview	
 of	
 the	
 Knoppix	
 Boot	
 Process ...43	

7.	
 Applying	
 Customized	
 Knoppix	
 Magic	
 to	
 Make	
 Your	
 RIHCD ..45	

7.1.	
 Preparing	
 the	
 Mastering	
 Environment..45	

7.2.	
 Cleaning	
 Up	
 the	
 Base	
 System	
 Before	
 Mastering ...46	

7.3.	
 Creating	
 the	
 Base	
 System	
 Compressed	
 Loopback	
 File ..48	

7.4.	
 Editing	
 isolinux.cfg	
 to	
 Customize	
 or	
 Remove	
 Boot	
 Options ..49	

7.5.	
 Editing	
 the	
 boot.msg	
 file	
 to	
 Customize	
 the	
 Start	
 Up	
 Splash	
 Screen50	

7.6.	
 Unpacking	
 minirt.gz	
 to	
 Edit	
 and	
 Customize	
 the	
 init	
 Start	
 Up	
 Script51	

7.7.	
 Editing	
 Initialization	
 Scripts	
 Outside	
 of	
 /boot..52	

7.7.1.	
 Editing	
 the	
 /etc/inittab	
 File ...53	

7.7.2.	
 Editing	
 the	
 /etc/init.d/knoppix-­‐autoconfig	
 Script ...54	

7.7.3.	
 Editing	
 the	
 /etc/init.d/knoppix-­‐startx	
 Script ...54	

7.8.	
 Creating	
 the	
 Knoppix-­‐Specific	
 Compressed	
 Loopback	
 File ..55	

8.	
 Putting	
 the	
 CD	
 in	
 RIHCD..56	

8.1.	
 Generating	
 SHA1	
 Sums	
 for	
 CD	
 Integrity	
 Checking...57	

8.2.	
 Creating	
 the	
 Final	
 .iso	
 Image ...57	

9.	
 Additional	
 Projects	
 and	
 New	
 Directions	
 for	
 RIHCD ...58	

9.1.	
 Additional	
 Software	
 to	
 be	
 Accessed	
 Without	
 Booting	
 from	
 the	
 RIHCD58	

9.1.1.	
 Microsoft	
 Sysinternals ...58	

9.1.2.	
 Statically	
 Linked	
 Linux	
 Binaries..58	

9.2.	
 Putting	
 RHICD	
 on	
 a	
 USB	
 Thumb	
 Drive ...58	

9.3.	
 Making	
 the	
 RIHCD	
 an	
 Automated	
 Incident	
 Analysis	
 Disc ..59	

9.4.	
 Making	
 Modular	
 Packages	
 of	
 Optional	
 Software	
 for	
 RIHCD ...59	

9.5.	
 Running	
 a	
 Squid	
 Proxy	
 on	
 the	
 Mothership	
 System ...59	

10.	
 Conclusion ...59	

11.	
 References ..61	

12.	
 Appendix ...62	

12.1.	
 Debian	
 Packages	
 to	
 Include	
 When	
 Building	
 the	
 RIHCD	
 Development	
 System..........62	

12.2.	
 Analysis	
 of	
 Knoppix	
 init	
 Script ...64	

12.3.	
 Analysis	
 of	
 Knoppix	
 knoppix-­‐autoconfig	
 script..66	

12.4.	
 etc/inittab	
 Used	
 by	
 RIHCD...68	

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 4	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

	

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 5	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

1. Introduction
Linux based Live CDs are plentiful in various flavors and popular with a wide

range of users. New users can boot and run Linux without permanently giving up the

familiarity of Windows, while advanced users can boot Live CDs to analyze a

compromised system in a safe environment.

Incident handlers and computer forensics experts rely on Live CDs to provide a

clean environment in which to run analytical tools. And depending on the task at hand,

any number of dozens of existing Live CDs will provide the basic tools needed.

However, no off-the-rack solution is going to fit you as well of a tool that is custom

tailored to your enterprise's unique operating environment.

Consider the problems faced by an experienced incident handler working in a

large, geographically disperse enterprise. When a system is compromised at a remote

office, the on-site IT staff might not be up to the challenge of a full post-mortem analysis.

They also might not be up to the challenge of booting an existing Live CD distribution

and configuring SSH for secure remote access? What if the compromised system is

behind a network address translation (NAT) firewall and is not directly accessible?

The solution is to build a Live CD that is designed specifically for incident

handling within your enterprise, and the secret ingredient is SSH remote port forwarding

through a separate dedicated system. Although this may sound daunting to the

uninitiated, all of the building blocks already exist and are familiar to most readers.

Please note that throughout this paper, I will frequently refer to this customized

disc as a Live CD, although all of the steps described will work just fine to create a Live

DVD. Since fewer systems will boot a DVD than will boot a CD, a Live CD may be

preferred. But because of its larger storage capacity, a bootable DVD allows for

significantly more latitude when it comes to what software gets included on the disc.

This paper is aimed at incident handlers and systems administrators who are

already experienced installing and securing Linux (Debian GNU/Linux, specifically). I

also assume that the audience has basic experience with BASH shell scripting, the day-to-

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 6	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

day aspects of using SSH, and hands-on experience installing and using various incident

handling tools. In addition, this paper assumes that the incident handler has already

established a collection of favorite analytical tools.

Many existing Live CDs try to be all things to all users (or at least most things to

most users). They are chock full of applications that will never be used during routine

incident handling (e.g. games, office applications, a variety of window managers, etc.).

Building your own Live CD means including only what you need and skipping

everything else. It also means having the ability to target the disc to a specific purpose

and operational environment.

If you have remote IT staff that are able to handle basic incident handling

procedures, providing a GUI and desktop will help them help you. If not, perhaps you

want to build a CD that provides remote access only. Consider spicing this option up

with your own custom shell scripts (or some great ones that others have written) for

system analysis, and you can have a fully automated, remotely deployable incident

analysis kit.

The basic building blocks for this project are your own custom Debian

GNU/Linux install, the Knoppix Live CD, SSH authentication using public keys, and

SSH remote port forwarding. The keystone is a dedicated system that the Live CD

automatically logs in to at boot time.

The specific application of this Live CD warrants attention beyond the basics if it

is to be used securely in an enterprise environment. Consider that once a Live CD is

released, it is out of your control and has the potential to be abused by rogue users. Also

consider that this CD will provide remote access to any system running it. If user

credentials are burned onto the disc, it is possible for an attacker to use these credentials

to remotely access any system running the CD. And since the CD will automatically log

in to a separate dedicated system, steps must be taken to secure this dedicated system

from rogue users.

Sections 2-5 may at first glance look like a run-of-the-mill Debian how-to, but the

procedures that are detailed are vital to ensuring that the Live CD can be widely

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 7	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

distributed and not present any additional risk or vulnerability to the systems that are

using it, all while providing secure remote access.

If you've ever taken a crack at remastering Knoppix, you already know that there

is a slew of online guides and documentation to help you along. This paper is not a

traditional remastering how-to. Instead it aims to help you make your own custom

Debian install bootable from a CD using Knoppix functionality. In other words, you will

learn to master Knoppix, not take the existing version of Knoppix and customize it to

your tastes (remastering Knoppix). According to Kyle Rankin, author of Knoppix Hacks

“Traditional Knoppix remastering is a time-consuming, error-prone, complex process full

of trial and error, but there is a better way.” (Rankin, 2008) Indeed. There are a number

of pitfalls to be aware of when remastering Knoppix; by starting from scratch and

mastering Knoppix, many of these pitfalls can be avoided.

This process does make extensive use of the unique features found in Knoppix.

These include the compressed loopback (or cloop) filesystem, which allows nearly 2 GB

of data to be compressed into less than 650 MB and mounted and read just like traditional

loopback file; and aufs (Another Union File System), which can mount multiple disparate

file systems into one merged directory structure, in this case merging read-only iso

images with a read/write ramdisk on top to make the entire file system writable.

2. Making Your Own Customized Debian GNU/Linux
Based System

Every incident handler is going to have their own “jump bag” full of tools that

they reach for when analyzing a system. Creating your own customized Linux install and

making it bootable and remotely accessible aims to make that jump bag a single CD that

can be distributed globally and securely accessed from anywhere. In this paper, this CD

will be called the remote incident handling CD (RIHCD).

2.1. The Development Environment
Creating your custom Linux install and making it into a bootable CD is going to

require a dedicated system (real or virtual) with Internet connectivity for development. If

your jump bag full of incident handling tools already includes a modestly sized, highly

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 8	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

customized Debian GNU/Linux install, your existing system can be used for development

just as well with the addition of a couple of dedicated disk partitions (e.g., an external

hard drive).

The basic layout of hardware needed for this project is a system that has two hard

drives and at least one gigabyte of RAM (Neggus, 2007) and can already boot from CD.

As with any system development, a faster processor, faster IO, and more RAM will make

the disc creation process faster. The minimum specifications that I would recommend

would be 2 x 8 GB hard drives, 2 GB of RAM, and at least one processor that is 1 GHz or

faster.

A spare workstation with the above specs (or better) can be used for development,

or a virtual machine with the above specs (or better) can work just as well, provided the

host system still has enough overhead to operate.

My own Live CD development is usually done using a virtual machine in

VMware Workstation in Linux. For the demonstrations in this paper, I’m using VMware

Fusion on a MacBook Pro. This gives me the ability to reboot the development system

multiple times and from multiple boot media even when working remotely (using NX

Server and NX Client for remote desktop access). Any virtualization product should

offer the same benefits. Using a virtualization product that can make snapshots of a hard

drive state eases the ability to fork development of the Live CD into multiple versions for

use in multiple environments.

The first hard drive is for installation of the base system, the system that will

eventually become a bootable CD. The size requirements for the drive are modest by

today's standards since we require only enough space for a relatively basic, although

highly customized, Linux install. In my development environment, I've found that 8 GB

per drive works well, although you could probably get by with 4 GB for the base install

drive.

The base install hard drive should have three partitions:

	
 	
 /boot	
 	
 512	
 MB
	
 	
 swap	
 	
 	
 1	
 GB	
 or	
 more
	
 	
 / 	
 	
 2	
 GB	
 or	
 more

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 9	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

An extra partition could be used on this disk or the second disk if optional extra

software is to be included (e.g., if multiple versions of the same CD are going to be

produced).

The size of the swap partition depends on how much RAM is available in your

development system. The total RAM plus swap should be about equal to the size of the

disc you wish to create. (Neggus, 2007)

Keeping all of /boot on a separate partition is always good practice, and is good

practice here since it will ultimately be replaced with /boot from Knoppix (slightly

modified with your customizations, of course). Keeping it on the same partition as the

rest of the operating system is technically possible, but can be procedurally cumbersome

later in CD development.

The rest of the space is for your customized Debian install. If you’re planning on

building a CD, you won't need more than 2 GB for this partition since you’re aiming for a

final compressed loopback file of less than 650 MB. If you're planning on building a

DVD, the compressed loopback file can be much larger, so your custom Debian install

and this disk partition itself can be larger as well.

The second hard drive is for the CD mastering process. It will accommodate a

copy of your base install as well as the resulting compressed loopback (cloop) files and

the final bootable CD file; ultimately, it will need to hold more data than the first hard

drive that holds the OS only, so plan accordingly. It only needs to have one partition,

although an optional second partition will come in handy if you plan on creating multiple

versions of the same CD.

2.2. Making Your Dream Incident Handling System
Since Knoppix is based on Debian GNU/Linux, it makes sense to use this Linux

distribution for the base system install. Although the procedures used in this paper may

be applicable to other Linux distributions, that kind of hacking is left as an exercise to the

reader.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 10	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

The i386 distributions are preferable since they will run on both x86 and x86_64

hardware. If software packages that are pre-compiled for the x86_64 (or AMD64) were

installed, the CD would be not work on older 32 bit hardware.

When partitioning the drive during installation, select “Manual” instead of

“Guided” partition. None of the guided partitioning options give you a separate /boot

partition, which you’ll want when it comes time to create your loopback images for the

CD.

The partitioning scheme that I’ve used is shown in the following figure:

When prompted during installation, create a user account. I call mine “handler.”

When prompted for which kernel to install, you'll want to select the most recent

686 kernel. At the time of this writing, that’s linux-image-2.6.26-2-686. Eventually, the

final CD will be using the 2.6.28.4 kernel that comes with Knoppix (although like

everything with this project, the kernel can be customized if desired).

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 11	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

When selecting which initrd to install, you can select the "generic: include all

available drivers" option, because ultimately, a customized version of the initrd from

Knoppix will be used. Likewise, the Knoppix boot loader (isolinux) will be used to boot

the CD, so choosing GRUB vs. LILO as a boot loader makes no difference.

2.3. Hardening the Base Install
Consider the possibility that this CD is going to be widely distributed, regardless

of whether you want it to be or not. Once you have the first remote user download and

burn a copy, the number of subsequent copies made and how they are used is out of your

control. Imagine that there are a thousand copies of this CD floating around your

enterprise as well as the outside world.

Although this scenario sounds far-fetched, it must be taken seriously and

considered at every point in the design process, because once you release this disc, you

are setting it free with the potential to be used and abused by anyone who picks it up.

This is a point that we will return to time and time again when designing and building

this CD.

2.3.1. Managing Root Access with Sudo

If you haven't already done so, make sure that root logins are not allowed by

removing the hashed password from root's /etc/shadow entry and replacing it with a "!":

root:!:14487:0:99999:7:::

We're also going to ensure that the user account created during installation (e.g.

“handler”) has sudo access. Use the visudo command to edit the /etc/sudoers file:

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 12	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

In this example, the handler account is allowed to run sudo without being

prompted for a password. This design copies that of most Live CDs, including Knoppix,

and is tremendously helpful for running automated scripts, or allowing end-users to

operate more easily. It may not be ideal for every operational environment.

Naturally, allowing the only user account unchecked root access seems like a

security risk, especially since the CD will ultimately be remotely accessible via SSH and

password authentication. Anyone who knows the handler password could remotely

access a system running RIHCD and have their way with it.

To prevent this kind of abuse, the handler account password will be reset to a

random value at boot time. The password can also be aged so that it has already expired;

when the handler account logs in, the user must immediately change this password.

(Schroder, 2009)

2.4. Randomizing the Handler Password at Boot Time
Take a look at the mass_passwd script available from

http://tuxcomputing.com/cookbook/mass_passwd. This script will create random

passwords for any number of users. In our case, we only want to generate a password for

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 13	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

one user, the handler account. Grab a copy of the script and put it into /usr/local/sbin or

somewhere else appropriate. Make sure it's executable and call it from /etc/rc.local

where it will be run at boot time. Also, don't forget to show the contents of the text files

created by this script if you want people to be able to log in using the handler account's

password. Writing this output to /etc/motd will ensure that the handler account can read

this information, which will be necessary when this user is prompted to change their

password.

$ wget http://tuxcomputing.com/cookbook/mass_passwd

$ sudo mv mass_passwd /usr/local/sbin/mass_passwd.sh

$ sudo chmod 755 /usr/local/sbin/mass_passwd.sh

$ sudo vim /etc/rc.local

#!/bin/sh -e

rc.local

This script is executed at the end of each multiuser runlevel.

Make sure that the script will "exit 0" on success or any other

value on error.

In order to enable or disable this script just change the execution

bits.

By default this script does nothing.

/usr/local/sbin/mass_passwd.sh handler

cat /mass_passwds/handler.passwd.txt

cat /mass_passwds/handler.passwd.txt > /etc/motd

exit 0

You'll probably want to edit the mass_passwd.sh file itself to change the default

message that gets printed out to /mass_passwd/username.passwd.txt (You might even

want to change the location of this file.)

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 14	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Double-check your work before you reboot. If you've made a typo or otherwise

botched the output of the password, you'll find yourself running a system that has only

one console-access account and an unknown, random password for that account. To fix

it, boot from a Knoppix disc, mount the hard drive, edit your script, umount the drive and

reboot.

Depending on how you plan to distribute your CD, you may wish to undertake

additional system hardening. If you plan to release a bootable system with no local

console access, harden away. If you plan to release a user-friendly CD to remote IT staff,

you might not want to harden the OS too much, as it could be unwieldy or unusable by

less experienced IT staff.

2.5. Installing Incident Handling Tools in Your Development
System

Every experienced incident handler is going to have his or her own set of favorite

tools for system analysis. Appendix A contains a list of software that can be installed as

Debian packages. The list is not meant to be an exhaustive catalog of recommended

tools, but rather a starting point of basic tools that should be applicable in most situations.

Since you'll be building a highly customized system, take this list of tools and run with it.

In addition to incident handling software that can be installed as Debian packages,

the following utilities are stand outs.

2.5.1. Rootkit Hunter and Chkrootkit

Rootkit Hunter, from http://www.rootkit.nl, and chkrootkit from

http://www.chkrootkit.org both work as advertised and will find rootkits. Since Debian

packages for these two pieces of software usually lag behind the latest release from the

project’s web sites, it’s beneficial to install these from source so that the freshest versions

are used.

2.5.2. Perl Scripts for Windows Forensic Analysis

Since Perl is available for Windows as well as Unix, a number of Perl scripts have

been written for Windows forensic analysis that can easily be ported to Unix. For

examples of these scripts, Harlan Carvey’s, Windows Forensics and Incident Recovery

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 15	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

and Perl Scripting for Windows Security: Live Response, Forensic Analysis, and

Monitoring.

 Harlan’s RegRipper tool will parse through Windows registry files looking for

forensically significant registry entries and the dates on which they were modified. This

is tremendously useful in post-mortem analysis as it can help pinpoint when a system was

compromised. His evt2xls script will take Windows event log files and spit them out as

.xls files to be opened and analyzed with Microsoft Excel. Once in Excel, the data can be

sliced up according to the analyst’s needs, zeroing in on important information while

excluding the rest.

2.6. Using NX Server/Client for Remote GUI Access over SSH
If you are designing your CD to provide no local console access, and instead

provide only remote SSH access, it's not necessary to install a window manager to use

GUI applications. Using the built-in X forwarding over SSH is one way to secure a

remote GUI, but unless every remote node in your enterprise network is bathing in

bandwidth and spare CPU cycles, the experience can be painful. Instead, install NX

server to send highly optimized, compressed X traffic over SSH, all with much lighter

system resource consumption.

NX server for Linux is provided for free by NoMachine (www.nomachine.com).

Also freely available are NX clients for Windows, Mac OS X, Linux, Solaris, and a web-

based client.

For this install, grab the NX Free Edition for Linux at

http://www.nomachine.com/download.php. You'll need to download and install three

separate components: NX Node, NX Client, and NX Server (Medialogic S.p.A., 2009).

Download and install each of the following packages. Check the links from the

download page noted above; links may change between the time this was written and the

time you read it.

$ cd /home/handler

$ wget http://64.34.161.181/download/3.3.0/Linux/nxclient_3.3.0-
6_i386.deb

$ wget http://64.34.161.181/download/3.3.0/Linux/nxnode_3.3.0-
22_i386.deb

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 16	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

$ wget http://64.34.161.181/download/3.3.0/Linux/FE/nxserver_3.3.0-
27_i386.deb

$ sudo dpkg -i nxclient_3.3.0-6_i386.deb

$ sudo dpkg -i nxnode_3.3.0-22_i386.deb

$ sudo dpkg -i nxserver_3.3.0-27_i386.deb

NX installs itself into the relatively non-intuitive directory /usr/NX/ where you'll

find config files, logs, binaries, etc. After the install, look for an install log file in

/usr/NX/var/log/install

Also note that if you've changed the default port that your SSH daemon listens on

(something I always recommend), NX server won't start as it looks for SSH on port 22.

To fix that, edit /usr/NX/etc/node.cfg and /usr/NX/etc/server.cfg to reflect your SSH port:

SSHDPort = "2222"

Also, edit the following lines in /usr/NX/etc/server.cfg accordingly:

SSHDAuthPort = "2222"

EnableUnencryptedSession = "0"

NX uses SSH for the transport mechanism as well as authentication (provided that

SSH is using password authentication and PAM), so NX needs to know where SSH is

running. Disabling unencrypted sessions is a good idea; otherwise, only the session

negotiation is encrypted, with all other GUI traffic unencrypted (Medialogic S.p.A.,

2009).

Since we're still allowing password authentication and PAM in our SSH server,

these should be the only changes you'll need to make to NX. Additional changes are

required if you are not allowing password authentication to SSH, and instead rely solely

on public keys. This is a great way to go for SSH security because it stops brute force

attacks cold, but NX can no longer use SSH's authentication mechanisms and must be

configured to use its own. (Medialogic S.p.A., 2009)

After making these configuration changes, go ahead and restart the NX server:

$ sudo /etc/init.d/nxserver restart

Grab a copy of nxclient for your favorite workstation, and try to connect to your

development system. Use your “handler” account and its current password. If you have

trouble connecting, check the /var/log/messages file on your dev system. If you want

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 17	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

gobs and gobs of debugging information, set the log level to 7 in /usr/NX/etc/server.cfg,

but don't forget to set it back to 6 when you've solved your problem.

Once you've verified that your NX server install is working correctly, go ahead

and remove the .deb files you downloaded to /home/handler.

Here's a screenshot of my development system running Iceweasel (Debian's non-

Mozilla branded version of Firefox):

So now you've got a system that you can log into remotely and run GUI

applications on your remote desktop.

Now is a good time to configure the web browser in your development system.

Get it just the way you want it before it gets immutably burned to CD. This could

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 18	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

include installing plugins (I heartily recommend AdBlock Plus and NoScript at least) and

configuring bookmarks. If you've never seen virustotal.com stop reading and check it

out. Go ahead and add this bookmark now, because you'll surely want it later.

Since some newer versions of Firefox (and by extension, Iceweasel) have a rather

uniquely frustrating way of handling sites with invalid SSL certificates, you'll probably

want to add permanent exceptions for any self-signed certificates on servers that you may

regularly use. Add them now, or face the prospect of re-adding them every time you visit

these sites when booted from the CD.

So now you've got your favorite incident handling tools installed, and your web

browser is configured just the way you like it. If you're building this system in a virtual

machine, now is a good time to take a snapshot of the hard drive to save your work.

If your CD is going to prohibit local console access and require all users to log in

via SSH, your system should be pretty much done, and you can skip the next sections

regarding installing the X server and window manager. If you do want to provide a GUI

and desktop to users booting the CD, read on.

2.7. Installing the X Server and Window Manager
If you're planning on making the CD usable by remote staff, you'll want a GUI

desktop. And since you're trying to be mindful of space constraints, you'll want to make

sure you pick something relatively lightweight.

This is where the benefits of customization are realized. By eschewing the more

bloated offerings like KDE and Gnome you can save space on the CD. The fluxbox

window manager is lightweight and fast and will run responsively on older, slower

systems. Because it doesn't come with many extra applications built in, it will consume

little disk space when you install it.

The minimal interface in fluxbox can be confusing for new users who are

accustomed to seeing icons, toolbars, and especially a “Start” button. If you know you'll

be building a CD for remote IT staff to use locally, and if they fall into this user category,

you might consider installing Xfce (http://www.xfce.org). “Xfce is a lightweight desktop

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 19	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

environment for various *NIX systems. Designed for productivity, it loads and executes

applications fast, while conserving system resources.” (Fourdan, 2009)

This paper will use fluxbox as an example, but any window manager with a small

installation footprint will work just as well.

To install fluxbox:

$ sudo apt-get update

$ sudo apt-get install fbdesk fbpager fluxbox fluxconf

The additional packages extend the functionality of fluxbox. Fluxbox offers a

GUI interface to configuring fluxbox; fbpager provides a way of keeping track of which

virtual desktops have which windows running in them; and fbdesk allows you to create

icons on your desktop. Only the fluxbox package itself is required to run the window

manager, but the optional extras can be nice to have, especially fluxconf.

Now that you've got a window manager installed, you'll want to have an X server

to run it on. Since you have NX Server installed and running, you can run Fluxbox

remotely over NX! Just select the "New virtual desktop" and "Run the following

command: /usr/bin/startflux" settings and fire it up.

To use your window manager locally, you're going to need an X server. The

X.org X server comes in many different flavors for many different video cards. Since

you want your CD to have drivers for a multitude of different video cards, you'll want to

install as many X server video packages as possible. To get a taste of just how many

packages are available, run the following command:

$ sudo apt-cache search xserver-xorg

Thankfully, all of these video card and input drivers can be installed by installing

two meta-packages:

$ sudo apt-get install xserver-xorg-input-all xserver-xorg-video-all

Go ahead and let Debian install all of its recommended packages on this one.

Some additional packages for 3D graphics and pretty fonts are recommended, and it's a

good idea to install them too:

$ sudo apt-get install libglide3 xfonts-100dpi xfonts-75dpi xfonts-
scalable

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 20	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

You'll also want to install the xinit package so that you can actually start the X

server up.

$ sudo apt-get install xinit

Now's a good time to check your progess:

$ startx

Did you see something like this?

If not, check the /var/log/Xorg.0.log file for errors.

If you're used to setting up a display manager like GDM or XDM as a way to

manage logging in and starting the desktop, don't worry about it here. You're only going

to have one account on the disc that can log in to the local console, and the Knoppix

startup script /etc/init.d/knoppix-startx handles starting up the GUI.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 21	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

3. Using SSH for Secure Remote Access
	

Using SSH as a transport for the NX remote desktop software has already been

demonstrated. This section will outline how to configure SSH for automated remote

access using public/private key pairs and remote port forwarding.

3.1. Creating SSH Keys
	

If you haven't done so already, now's a good time to create a public/private key

pair for the handler account on your RIHCD.

It's imperative to create the private key without a passphrase or password. When

using a passphrase to protect your private key, the passphrase must be entered before the

system can access your key. Naturally, this will hinder the automated access we'll need

for port forwarding, since we don't want the system to wait for a remote user to type in a

passphrase.

handler@rihcd:~$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/home/handler/.ssh/id_dsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/handler/.ssh/id_dsa.

Your public key has been saved in /home/handler/.ssh/id_dsa.pub.

The key fingerprint is:

39:1c:59:66:52:53:c5:06:a3:e2:54:1b:bd:d7:90:28 handler@rihcd

The key's randomart image is:

+--[DSA 1024]----+

| ..Oo+=.. |

| BE=o.= |

| = o. o o |

| + + . . .|

| S . |

| . |

| |

| |

| |

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 22	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

+-----------------+

handler@rihcd:~$

You should now have two new files: /home/handler/.ssh/id_dsa and

/home/handler/.ssh/id_dsa.pub

3.2. Remote Access: The Back End Mothership
So now you've got your own customized Debian install with remote command

line access via SSH and remote GUI access via NX over SSH. Now to make the system

accessible even when behind a network address translation (NAT) device.

NAT can act as a kind of one-way filter for networks. Systems behind a NAT

firewall can initiate traffic out to the Internet, and the associated responses can get back

in through the firewall. But since the network “behind” the NAT device typically uses

private network space (RFC 1918), any traffic that is not already associated with an

existing outbound connection cannot get in to the private hosts.

NAT firewalls are ubiquitous and frequently found in homes and small offices as

a Small Office Home Office (SOHO) router, firewall, or combination of these with a

Wireless Access Point (WAP). They are also common in remote offices where far-flung

staff make do with whatever Internet access is available. Any system behind a NAT

device will not be directly accessible via SSH unless the NAT firewall is configured to

specifically forward this traffic. So how to access the CD when booted behind a NAT

device?

Instead of initiating the SSH connection from the outside -> in (Internet -> private

NAT network) have the host behind the NAT firewall initiate the connection out (private

NAT space -> Internet).

This is similar to how much malicious code operates now: gone are the days when

a virus would open up a listening port on the infected host to act as backdoor access for

the attacker. Virus writers know that NAT firewalls are everywhere, prohibiting this kind

of access, so they design their malicious code to initiate the connection out to a dedicated

system, often an Internet Relay Chat (IRC) server or a web server.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 23	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

We're going to tell our remote incident handling system to phone home using SSH

to a dedicated server at start up. This dedicated server can be in publicly addressable IP

space, or RFC 1918 space if your enterprise network routes it internally. The SSH

connection will not provide console access, but instead will utilize remote port

forwarding to provide a back channel to the system running our CD.

3.3. SSH Remote Port Forwarding
3.3.1. SSH Local Port Forwarding: A Review

Many readers are familiar with SSH local port forwarding. This is where a user

has takes all TCP traffic bound for a local listening port and sends it to a listening port on

a remote machine, all over SSH.

For example, to check your email on an IMAP mail server without exposing your

login credentials or the email itself, you could run the following command:

$ ssh -L1430:localhost:143 you@your.imap.email.server

This opens port 1430 on your localhost interface and sends all traffic sent to your

system’s 127.0.0.1:1430 over SSH to 127.0.0.1:143 of the remote IMAP mail server. So

configure your email client to use 127.0.0.1:1430 as its IMAP server and enjoy checking

your email using a plain text protocol tunneled through an encrypted channel, keeping

your login credentials a secret.

SSH can also do remote port forwarding, and this is the trick we use to get access

to our hosts on a NAT network.

3.3.2. SSH Remote Port Fowarding

In remote port forwarding, a user logs in to a remote machine and opens up a

listening TCP port on its localhost interface. Anything that is sent to this port is shoveled

back over SSH to the designated port listening on the loopback interface of the local

machine, where the connection originated.

Using remote port forwarding, we configure the incident handling system to

automatically SSH to a designated remote host (hereafter called the Mothership), and use

remote port forwarding to send all traffic from a listening port on the Mothership's

localhost to the SSH server. Provided that the remote incident handler has an account on

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 24	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

the Mothership, he can then use SSH to log in to the Mothership, then SSH to the

listening port on Mothership's localhost interface, which is then forwarded back to the

SSH server on the incident handling CD.

Consider the following (annotated and slightly edited for readability) terminal

session, which starts on my laptop (silverslab) on a private network behind a NAT

firewall in a neighborhood coffee shop.

silverslab:~ bert$ ifconfig en1 | grep "inet "

 inet 192.168.10.15 netmask 0xffffff00 broadcast 192.168.10.255

Log in to the virtual machine (also behind in a NAT network):

silverslab:~ bert$ ssh -p 2222 handler@192.168.148.129

handler@192.168.148.129's password:

Linux rihcd 2.6.26-2-686 #1 SMP Fri Aug 14 01:27:18 UTC 2009 i686

Last login: Sat Sep 5 13:47:44 2009 from localhost

handler@rihcd:~$

I'm in. Now to use remote port forwarding and log in to my publicly addressable

workstation.

handler@rihcd:~$ ssh -R3333:localhost:2222
bert@suckerfish.infosec.utexas.edu

bert@suckerfish.infosec.utexas.edu's password:

Linux suckerfish 2.6.26.3suckerfish #1 SMP Mon Jul 27 16:56:53 CDT 2009
x86_64

Last login: Sat Sep 5 13:46:47 2009 from rrcs-71-42-142-
91.sw.biz.rr.com

bert@suckerfish:~$

Now I'm logged in to my workstation. From here I use SSH to log in to the

listening port on my loopback interface that was designated above:

bert@suckerfish:~$ ssh -p 3333 handler@localhost

handler@localhost's password:

Last login: Sat Sep 5 13:48:18 2009 from 192.168.148.1

handler@rihcd:~$

Now I'm logged in to my virtual machine, behind two different NAT devices.

handler@rihcd:~$ /sbin/ifconfig eth0 | grep "inet addr"

 inet addr:192.168.148.129 Bcast:192.168.148.255
Mask:255.255.255.0

handler@rihcd:~$

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 25	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

3.4. Remote GUI Access with NX Server and Port Forwarding
Now, assuming that the remote port forwarding session from suckerfish to the

RIHCD is still active (anything sent to suckerfish:3333 will be forwarded over to

RIHCD:2222), consider this SSH *local* port forwarding command:

silverslab:~ bert$ ssh -L7000:localhost:3333 bert@suckerfish

Linux suckerfish 2.6.26.3suckerfish #1 SMP Mon Jul 27 16:56:53 CDT 2009
x86_64

Last login: Sat Sep 5 14:16:26 2009 from rrcs-71-42-142-
91.sw.biz.rr.com

bert@suckerfish:~$

Any TCP traffic that we send to port 7000 on silverslab's localhost will be

shoveled over SSH to suckerfish, which will in turn shovel it back to the SSH daemon on

RIHCD.

Configure your NX client to point to localhost:7000

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 26	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Now you can run GUI applications from RIHCD, even while it's in private space

on a NAT network.

4. Building the Mothership
The Mothership is a system dedicated to the sole purpose of receiving remote port

forwarding SSH connections from your remote incident handling CD. (In the examples

above, I used suckerfish as the Mothership system.) It must be accessible by systems that

boot RIHCD for remote access, as well as your own workstation.

It also serves as a kind of home base or back-end server for the booted CD. It will

serve as a centralized syslog server for the disc as well as a file repository for new and

updated scripts. In addition to starting a remote port forwarding SSH session at boot

time, the CD can also be configured to automatically pull down new and updated files

from the Mothership via rsync. This means that many new features can be implemented

without creating an entirely new CD to distribute.

Although the Mothership is the keystone to SSH access to NAT systems running

RIHCD, the Mothership system itself can be relatively simple and stripped down. (This

system would be a good candidate for virtualization.) At a minimum, the only thing it

needs to do is run SSH and allow the handler account to log in. If you don't already have

a centralized logging server on your network, you can run one on the Mothership using

syslog-ng and have all of your RIHCD logs stored/monitored in one location.

Running this service is best done on a dedicated system that can be locked down

and closely monitored. Remember that you're not going to have much control over who

boots your new CD, and it's going to be configured to automatically log in to the

Mothership at boot time (although this will be locked down later with SSH chroot).

Any flavor of Unix should work for the Mothership. To keep things consistent,

I'm going to stick with the same version of Debian that I used to build the base install for

the CD, using a net install CD image and a minimal, expert install. If you're going to run

centralized syslogging on this system, plan your disk partitions accordingly.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 27	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

I won't cover actually installing this OS, but with any new install, system-

hardening steps should be taken, such as turning off unnecessary services, ensuring that

there are no extraneous user accounts on the system, and optionally installing and

configuring IPTables to your network's requirements and your tastes. Make sure you

leave the SSH port open to networks that will be booting your final CD.

If you haven't changed the default port that SSH runs on (22), please consider

doing so if you want to avoid the overwhelming majority of most SSH attacks. It won't

stop a dedicated attacker, but it will stop ankle-biters and automated attacks (e.g. worms).

4.1. Hardening the Handler Account on the Mothership
Anyone who can boot your CD will have the ability to log into the Mothership

system with the handler account, so substantial system hardening should be done to

protect against abuse from this account.

In addition to changing the default listening port for SSH you will want to

configure the SSH server to not accept passwords, and instead rely on public key

authentication.

We don't want just anyone to be able to log in to Mothership, just anyone with a

copy of the CD. So disabling password authentication for the handler account means that

an end user must at one point have a copy of the handler account’s private SSH key.

Sharing a known password (easier than sharing the SSH private key) won't get a rogue

user access to Mothership.

The following are changes from the default values in sshd_config to disable

password authentication (BSD, 2009):

Change to no to disable tunnelled clear text passwords

PasswordAuthentication no

....

UsePAM no

Create the handler account on Mothership, if you haven't already done so. (It will

be very helpful in the future if you ensure that the handler account on Mothership has the

same numerical UID as the handler account on your base install.)

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 28	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Now edit the /etc/passwd file and change the default shell for the handler account

from /bin/bash to /bin/rbash, the restricted shell.

/bin/rbash is the same as calling /bin/bash with the -r switch to restrict what the

user of this shell can do. rbash behaves identically to bash with the exception that the

following are disallowed or not performed:

- Changing directories with cd

- Setting or unsetting the values of SHELL, PATH, ENV, or BASH_ENV

- Specifying command names containing /

- Specifying a file name containing a / as an argument to the . builtin

command

- Specifying a filename containing a slash as an argument to the -p option to

the hash builtin command

- Importing function definitions from the shell environment at startup

- Parsing the value of SHELLOPTS from the shell environment at startup

- Redirecting output using the >, >|, <>, >&, &>, and >> redirection operators

- Using the exec builtin command to replace the shell with another command

- Adding or deleting builtin commands with the -f and -d options to the enable

builtin command

- Using the enable builtin command to enable disabled shell builtins

- specifying the -p option to the command builtin command

- turning off restricted mode with set +r or set +o restricted.

These restrictions are enforced after any startup files are read. (GNU, 2004)

4.2. Creating the Handler Account's Home Directory
Since you'll have no control over who uses the handler account to log in to the

Mothership, you must severely restrict what this account can do. The first step was

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 29	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

specifying the rbash shell for this account, the next step is limiting what the handler

account can do via SSH, its only real shell access.

mkdir -p /home/handler/.ssh

vi /home/handler/.ssh/authorized_keys2

Add the contents of the /home/handler/.ssh/id_dsa.pub file from your RIHCD

base install to this file and save it. Then recursively change ownership of all files in

/home/handler so that handler owns them, and change permissions on .ssh/ and

.ssh/authorized_keys2:

chown -R handler:handler /home/handler

chmod 700 /home/handler/.ssh

chmod 600 /home/handler/.ssh/authorized_keys2

You should now be able to SSH without being prompted for a password from

your RIHCD base system to the Mothership using the handler account. Recall that

automatic SSH access will be critical for setting up port forwarding and using rsync on

RIHCD to pull down updated files from the Mothership.

Did your SSH access work? Did you get a shell on Mothership? If so, that's great

for testing purposes, but terrible in real life. Since we're basically allowing anyone to log

in with the handler account, we don't want them to get an interactive shell on a virtual

terminal. Denying a terminal is accomplished with the no-pty option in the

authorized_keys2 file.

Open the /home/handler/.ssh/authorized_keys2 file and append no-pty to the front

of the key:

no-pty ssh-dss AAAAB3NzaC1kc.......

Although this won't stop the handler account from running non-interactive

commands over SSH:

handler@rihcd:~$ ssh -p 2200 192.168.148.131 w

 17:29:48 up 45 min, 1 user, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

root tty1 - 16:50 16.00s 2.16s 1.96s -bash

handler@rihcd:~$

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 30	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

4.3. Using SSH to chroot the Handler Account
The best way to prevent unwanted commands from being run remotely is to

chroot the handler account using SSH. This has the advantages severely limiting the

number of executable commands that can be run as well as making the rest of the file

system inaccessible to the chrooted user. (BSD, 2009)

If you've ever made a chroot jail before, you might not be looking forward to the

prospect of doing it again. Creating device nodes, finding and copying library files, and

replicating directory structures is all such a time-consuming mess that's easy to get

wrong most of the time. Thankfully, there's the makejail utility

(http://www.floc.net/makejail/), and it’s available as a Debian package.

$ sudo apt-get install makejail

“The objective of makejail is to help an administrator creating and updating a

chroot jail with short configuration files.” (Tessio, 2009) It uses strace, a system call

tracer, to determine what libraries, files, and directories a specific binary application

needs to run. It then populates a chroot directory with these files.

To run makejail to create a chroot environment for your handler account, you'll

need a small makejail config file. Mine is named chroot.py and looks like this:

chroot="/chroot"

cleanJailFirst=1

testCommandsInsideJail=["rbash rsync"]

Make sure you've got a /chroot directory before running makejail:

$ sudo mkdir /chroot

$ sudo makejail chroot.py

You may need to add a link in /chroot/bin for sh:

ln -s /chroot/bin/rbash /chroot/bin/sh

Now edit the /etc/ssh/sshd_config and use a Match user directive to specify that

only the handler account is chrooted when logging in via SSH (BSD, 2009):

Match user handler

 ChrootDirectory /chroot

Match

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 31	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Now to test SSH access for the handler account from the RIHCD base system to

the Mothership:

Trying to SSH and get a shell results in a hung terminal:

handler@rihcd:~$ ssh -p 2200 192.168.148.131

PTY allocation request failed on channel 0

Trying to use SSH to get a directory listing fails, since ls is not in a chroot

environment:

handler@rihcd:~$ ssh -p 2200 192.168.148.131 "ls -al /"

rbash: ls: command not found

handler@rihcd:~$

But since rsync is in the chroot directory, the handler account can still use rsync

over SSH to download files from the Mothership:

handler@rihcd:~$ rsync -rv -e "ssh -p 2200"
192.168.148.131:/home/handler/* .

receiving incremental file list

test_rsync_file

sent 30 bytes received 104 bytes 268.00 bytes/sec

total size is 18 speedup is 0.13

handler@rihcd:~$

And remote port forwarding using SSH still works:

handler@rihcd:~$ ssh -N -n -p 2200 -R3333:localhost:2222
192.168.148.131 &

[1] 15431

handler@rihcd:~$

mothership:~# ssh -p 3333 handler@localhost

handler@localhosthost's password:

Linux rihcd 2.6.26-2-686 #1 SMP Fri Aug 14 01:27:18 UTC 2009 i686

Last login: Tue Sep 8 15:14:46 2009 from 192.168.148.1

handler@rihcd:~$

If you put a directory that is write-only and owned by handler in your /chroot

directory, you can have a landing pad to use for uploading files from your RIHCD. This

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 32	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

is great for uploading the output of analytical scripts, or any other interesting files for

additional analysis or archiving.

mothership:/chroot# mkdir handler_files

mothership:/chroot# chown handler:handler handler_files

From your RIHCD base system:

handler@rihcd:~$ rsync -v -e "ssh -p 2200" junx.tgz \
192.168.148.131:/handler_files

junx.tgz

sent 4756 bytes received 7063 bytes 23638.00 bytes/sec

total size is 1368156 speedup is 115.76

handler@rihcd:~$

If this functionality is added, remember that it can be abused by a rogue user to

fill up the filesystem on the mothership, or to download potentially sensitive files that

previous users have uploaded. To avoid this kind of abuse, ensure that any files that are

uploaded are quickly moved to a different directory that is inaccessible by the handler

account.

The chroot functionality introduced in later versions of OpenSSH is a welcome

feature, allowing us to severely restrict what the handler account can and can't do.

Although it was originally designed to simplify securing SFTP user accounts, using the

makejail program makes setting up a chroot shell account less painful than traditional

methods by orders of magnitude.

A nice side-effect of using SSH chroot is that the handler account effectively has

no access to its own /home directory on the Mothership system. This greatly limits the

potential for malfeasance from rogue users (e.g. rogue user can’t upload or edit

~/analysta/.ssh/authorized_keys)

4.4. Setting Up Syslog-ng for Remote Logging Between RIHCD
and Mothership

Syslog-ng is the “next generation” of syslog. It features remote logging over TCP

(regular old syslog will only forward logs over UDP which is less reliable), flexible

filtering of log entries based on content, and the ability to use macros to designate log

destinations (BalaBit, 2009).

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 33	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

At the time of this writing, the latest version of syslog-ng available for the stable

branch of Debian is 2.0.9. The latest version of the sourcecode is 3.0.4 available from

http://www.balabit.com/downloads/files/syslog-ng/open-source-edition/

The 3.0 branch supports remote logging over TLS (Transport Layer Security)

natively, while the 2.0 branch needs stunnel (http://www.stunnel.org/) to send and

receive logs over SSL.

The following example will describe how to set up syslog-ng for remote logging

over an un-encrypted channel. Decide for yourself if your network environment requires

you to send syslog data over an encrypted channel. It probably does, but that is beyond

the scope of this paper. (Either method will require the creation of encryption certificates

using OpenSSL and most likely the creation of your own certificate authority.) Instead, I

point you to the very excellent documentation for setting up TLS in syslog-ng 3.0

(http://www.balabit.com/dl/html/syslog-ng-v3.0-guide-admin-en.html/bk01-toc.html) or

the very excellent recipes to do this in chapter 19 of the Linux Network Cookbook, by

Carla Schroder.

You should have the latest Debian package of syslog-ng already installed on both

the RIHCD base install system and the Mothership system. All that's required is a little

configuration file adjustment to get remote logging started.

Edit the /etc/syslog-ng/syslog-ng.conf file on your Mothership system to include

the following source entry:

source s_tcp {

 # receive 514/TCP syslog events from remote hosts

 tcp(ip(0.0.0.0) port(514) max-connections(1000));

 };

Then add a destination directive using the $HOST macro to specify a specific

logfile for each host:

Specific dest per host

destination df_remote_hosts {

 file("/opt/logs/$HOST");

 };

Add an entry to actually make the logging happen:

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 34	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

log {

 source(s_tcp);

 destination(df_remote_hosts);

};

Now restart syslog-ng:

/etc/init.d/syslog-ng restart

If you run netstat -anp you should see this line to indicate that syslog-ng is

listening for remote log entries:

tcp 0 0 0.0.0.0:514 0.0.0.0:*
LISTEN 2383/syslog-ng

Edit the /etc/syslog-ng/syslog-ng.conf file on the RIHCD base install system and

add the following entry to specify the remote log server (change your IP address

accordingly):

remote syslog-ng server via TCP

destination d_mothership { tcp("192.168.148.131" port(514));};

And this entry on the RIHCD system to send the logs to the Mothership:

ship all of this stuff to remote syslog-ng server

log {

 source(s_all);

 destination(d_mothership);

};

Save your file and restart syslog-ng, and you should see the following on

Mothership:

mothership:~# cd /opt/logs/

mothership:/opt/logs# ls

192.168.148.129

mothership:/opt/logs# head 192.168.148.129

Sep 9 14:22:07 192.168.148.129 syslog-ng[15265]: syslog-ng starting
up; version='2.0.9'

This is an overly simplified configuration and it only scratches the surface of

what's possible with syslog-ng. In fact, you could accomplish the same thing (albeit over

UDP) with regular syslog. If you haven't used it before, I highly recommend using

syslog-ng for its content-matching and filtering abilities, not to mention its remote

logging and log forwarding abilities.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 35	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

5. Getting RIHCD to Phone Home
Now that you've got streamlined SSH access (no password prompt), rsync over

SSH, and remote logging enabled, it's time to start configuring the RIHCD base system to

phone home to the Mothership at boot time.

5.1. Automating SSH Access at Startup
The /etc/rc.local file on the RIHCD system has already been edited to change the

password for the handler account. The command to phone home can go in this same file,

or into another shell script that gets called from rc.local.

After the password has been reset by the mass_passwd.sh script, the new

password must be sent to the Mothership, otherwise there is no way to remotely log into

the RIHCD (unless you've put your own public key in ~handler/.ssh/authorized_keys on

the RIHCD system). This is another reason why using syslog-ng over TLS, or SSL with

stunnel is advisable.

Recall that the username and password combination from the mass_passwd.sh

script is written to /mass_passwds/mass_passwd.log. Edit the /etc/rc.local file

accordingly:

/usr/bin/tail -n 1 /mass_passwds/mass_passwd.log | /usr/bin/logger

The next time you restart the RIHCD system, look for the following log entry on

motherfish:

mothership:/opt/logs# tail -n 1 192.168.148.129

Sep 9 14:49:38 192.168.148.129 logger: Wed Sep 9 12:58:46 CDT 2009
handler aeyurool

This is a good place to start up the remote port forwarding SSH session. Add the

following lines to the RIHCD /etc/rc.local file (or a different file that is called from

rc.local):

set the port for SSH forwarding

random_port=$(($RANDOM+1024))

/usr/bin/ssh -n -N -p 2200 -R$random_port:localhost:2222 -i \
/home/handler/.ssh/id_dsa handler@192.168.148.131 &

In a large enterprise network with distributed IT staff, it's possible to have

multiple CDs booted at one time, and multiple incident handlers needing to log in via

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 36	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Mothership. So you won't want the remote port forwarding to be set to the same port on

Mothership every time. Instead, use the built-in bash function RANDOM. “Each time

this parameter is referenced, a random integer between 0 and 32767 is generated.” (GNU,

2006) To ensure that a privileged port (below 1024) is not used, add 1024 to the

$RANDOM value, and use that as the remote port to forward to on Mothership.

Since /etc/rc.local runs as root, you'll need to make sure that the public key for the

Mothership system is in the /root/.ssh/known_hosts file on the RIHCD system.

handler@rihcd:~$ sudo sh

sh-3.2# ssh -p 2200 192.168.148.131

The authenticity of host '[192.168.148.131]:2200
([192.168.148.131]:2200)' can't be established.

RSA key fingerprint is 2b:2e:d8:75:1d:97:f7:1d:5f:c1:36:48:36:c7:42:81.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[192.168.148.131]:2200' (RSA) to the list
of known hosts.

Permission denied (publickey).

sh-3.2# exit

exit

handler@rihcd:~$

It's doesn't matter that root wasn't able to connect (it doesn't have a public key on

the Mothership). What matters is that the Mothership's RSA key is added to root's

~/.ssh/known_hosts file so that SSH can occur without a hitch when run as root from

/etc/rc.local

To test the magic, reboot your RIHCD base system and walk away from it. Log

into your Mothership system, and take a peek in the logs for action from the handler

account:

mothership:/opt/logs# netstat -lanp | grep handler

tcp 0 0 127.0.0.1:17276 0.0.0.0:*
LISTEN 2621/sshd: handler

tcp 0 0 192.168.148.131:2200 192.168.148.129:35409
ESTABLISHED 2619/sshd: handler

tcp6 0 0 ::1:17276 :::*
LISTEN 2621/sshd: handler

unix 3 [] STREAM CONNECTED 7180 2619/sshd:
handler

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 37	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

unix 3 [] STREAM CONNECTED 7179 2621/sshd:
handler

mothership:/opt/logs# tail 192.168.148.129 | grep handler

Sep 9 16:11:24 192.168.148.129 chage[2776]: changed password expiry
for handler

Sep 9 16:11:24 192.168.148.129 logger: Wed Sep 9 16:11:24 CDT 2009
handler jooquaih

mothership:/opt/logs#

Now log in to the RIHCD system from Mothership:

mothership:/opt/logs# ssh -p 17276 handler@localhost

The authenticity of host '[localhost]:17276 ([127.0.0.1]:17276)' can't
be established.

RSA key fingerprint is 35:dd:94:23:3f:4d:d7:7f:4c:73:85:c0:8a:3c:85:cd.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[localhost]:17276' (RSA) to the list of
known hosts.

handler@localhost's password:

You are required to change your password immediately (password aged)

Linux rihcd 2.6.26-2-686 #1 SMP Fri Aug 14 01:27:18 UTC 2009 i686

Last login: Wed Sep 9 16:06:13 2009 from 192.168.148.1

WARNING: Your password has expired.

You must change your password now and login again!

Changing password for handler.

(current) UNIX password:

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Connection to localhost closed.

mothership:/opt/logs# ssh -p 17276 handler@localhost

handler@localhost's password:

Linux rihcd 2.6.26-2-686 #1 SMP Fri Aug 14 01:27:18 UTC 2009 i686

Last login: Wed Sep 9 16:15:29 2009 from localhost

handler@rihcd:~$

5.2. Automatically Pulling Down New Files from the Mothership
at Boot Time

Pre-authenticated SSH access can also be useful for downloading files from the

Mothership via rsync (http://www.samba.org/rsync/). This makes a great way to

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 38	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

distribute updated analytical scripts or documentation without burning an entirely new

CD to distribute. Rsync is an especially nice tool to use at it only transfers the

differences between one file and another instead of the entire file from remote to local

host. For small files this difference is negligible, but for big files, it is certainly

noticeable.

Make a new subdirectory in your /chroot directory on the Mothership system and

give the handler account (the handler group, really) read access.

mothership:~# cd /chroot

mothership:/chroot# mkdir handler_home_updates

mothership:/chroot# chown root:handler handler_home_updates/

mothership:/chroot# chmod 750 handler_home_updates/

mothership:/chroot# ls -al handler_home_updates/

total 8

drwxr-x--- 2 root handler 4096 2009-09-09 18:39 .

drwxr-xr-x 11 root root 4096 2009-09-09 18:39 ..

mothership:/chroot#

You can make this directory read-write for the handler account, but be aware that

it's one more avenue of attack: rogue CD users could exhaust your local filesystem, or

cause other users of the CD to download inappropriate data from this directory.

To initiate this automatic rsync from Mothership, add another command to the

/etc/rc.local file on the RIHCD base system:

/usr/bin/rsync -rv -e "ssh -p 2200 -i /home/handler/.ssh/id_dsa"
handler@192.168.148.131:/handler_home_updates/ /home/handler

This uses rsync over SSH (as authenticated by the passwordless private key) to

pull down any new files from mothership:/chroot/handler_home_updates to

/home/handler on the RIHCD:

handler@rihcd:~$ /usr/bin/rsync -rv -e "ssh -p 2200 -i \
/home/handler/.ssh/id_dsa" \
handler@192.168.148.131:/handler_home_updates/ /home/handler

receiving incremental file list

documentation.html

sent 30 bytes received 266 bytes 118.40 bytes/sec

total size is 163 speedup is 0.55

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 39	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

handler@rihcd:~$

To test, place some new content on mothership:/chroot/handler_home_updates

and reboot your RIHCD base system, then check for your file in rihcd:/home/handler

6. What is Knoppix?
Created by Klaus Knopper, Knoppix was one of the first and is now probably the

most popular existing Live CD, and with good reason. It's based upon Debian

GNU/Linux and automatically detects myriad hardware devices, including sound cards,

video cards and monitors. And of course, because it's a Live CD, it runs completely from

the read-only CD, not needing to access the local hard drive at all (although it can if you

want it to).

The magic in Knoppix comes from the ability to cram a base Linux install of

nearly 2 GB into single file of less than 650 MB. That single file is then mounted as a

compressed loopback filesystem using the cloop kernel module developed by Klaus

Knopper. That cloop filesystem is then overlaid with a read/write ramdisk using aufs

(Another Union FileSystem, developed by Junjiro Okajima). The result is a full-featured

Linux install that has a read/write file system without writing to the local hard drives.

6.1. Anatomy of a Knoppix CD:
If you boot a Knoppix 6.x CD, the contents of the CD itself are accesible as /mnt-

system/ In the screenshots below, I show the CD when mounted (not booted) in a Mac

OS X system:

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 40	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

For such a uniquely rich CD, it has surprisingly few files. A brief explanation of

what's found:

./KNOPPIX:

KNOPPIX The main compressed loop back file containing the Debian OS

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 41	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

LICENSE.txt GNU GPL version 2 license
README_Security.txt Warning about built in accounts and su, root access

SOURCES.txt Where to get source code for KNOPPIX-specific packages
modules Directory containing kernel modules used at boot time

sha1sums SHA1 sums for all of these files, used during CD integrity test

./KNOPPIX/modules:

aufs.ko Another Union FS module, used to stack disparate file systems as one

cloop.ko Kernel module to access compressed loopbak file

./boot:

isolinux Directory containing boot files used by isolinux boot loader

./boot/isolinux:

balder.img Floppy disk image used to boot FreeDOS
boot.cat Boot catalog file

boot.msg Welcome message and version info displayed before boot prompt
f2 Help screen, shows additional boot options (e.g. memtest, FreeDOS, etc.)

f3 Help screen, shows boot options used for booting Knoppix
german.kbd German language keyboard mappings

isolinux.bin 2nd stage boot image, used by isolinux boot loader
isolinux.cfg Configuration file for isolinux boot loader

linux The kernel file used by Knoppix
logo.16 Splash screen displayed as part of boot.msg

memdisk Another linux kernel, used by memtest
memtest Memory tester (memtest86 v1.65)

minirt.gz Initial Ram Disk (initrd) used during boot process

Many of these files are optional and can be left out of your final CD, depending

on how you wish to distribute it:

README_Security.txt

SOURCES.txt

sha1sums

balder.img

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 42	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

f2

f3

german.kbd

memdisk

memtest

Some of these files are absolutely critical to booting/operating the CD and must

be included:

LICENSE.txt

modules/aufs.ko

modules/cloop.ko

boot.cat

isolinux.bin

isolinux.cfg

linux

minirt.gz

And a handful of these files are ripe for customization (to be detailed in section

7):

KNOPPIX Will be created using RIHCD base install

boot.msg Change this to provide a customized welcome message
f2 & f3 Change these (or create additional screens) for customized help

isolinux.cfg Customize how Knoppix boots
linux Creating your own custom kernel for Knoppix is fun and exciting

logo.16 Create a custom splash screen to brand the CD

minirt.gz Several files zipped into one; contains init startup script

The minirt.gz file is the root file system that the Linux boot image uses, as

specified in the isolinux.cfg file; it contains the minimum amount of software necessary

to set up the full Knoppix system. (Neggus, 2007)

To access the contents of the minirt.gz file, unzip it and expand it using cpio:

mkdir /knoppix-initrd

cd /knoppix-initrd

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 43	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

cp /mnt-system/boot/isolinux/minirt.gz .

gunzip minirt.gz

cpio -idvm <minirt

You should have a directory listing that looks like this:

root@Microknoppix:/knoppix-initrd# ls

KNOPPIX bin etc init mnt-system modules ramdisk tmp

UNIONFS dev home mnt mnt-user proc sys

All of these listings are directories, except for the init file. This file (called

linuxrc in previous versions of Knoppix) is the main system configuration script,

responsible for creating the ramdisk, mounting the compressed loopback file(s), and

creating the unionfs. It will be explored in detail in the next section.

It's worth noting most of the directories contained in the compressed minirt.gz file

are empty, with the exception of ./bin, ./etc, and ./dev. ./bin contains the busybox

minimal shell, and ntfs-3g, just enough binary programs to get your Knoppix CD up and

running. ./etc contains a skeletal mtab file and ./dev has placeholder files for directories,

device nodes, etc.

6.2. Overview of the Knoppix Boot Process
Since the bulk of this project is taking Knoppix boot functionality and applying it

to your own Debian install, it's important to have a good understanding of the Knoppix

boot process. The following outline summarizes the Knoppix 6.2 boot process:

1. Computer is turned on. The system BIOS must be configured to boot from a

CD for the rest of the boot process to proceed.

2. Provided that the BIOS supports the El Torito specification (bootable CDs), the

BIOS scans the CD for a boot record, which will point it to the boot catalog on the disc.

The boot catalog contains a list of boot entries, where each entry in the boot catalog

points to a boot image if that boot entry is selected. By default, the isolinux.bin boot

entry is selected (Neggus, 2007).

3. isolinux.bin runs as configured by isolinux.cfg. The isolinux.bin file enables

the user to select bootable images listed in the isolinux.cfg file. This file specifies the

default boot values, including default kernel, initial ram disk (initrd), whether or not a

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 44	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

boot prompt is displayed, the amount of time it's displayed, which splash screens and

welcome messages are displayed, and a few default kernel options.

4. As it boots, isolinux displays the welcome splash screen and the boot.msg file,

followed by a boot prompt. The end user can select f2 to display a list of different

bootable images (e.g. FreeDOS, memtest), or select f3 to see a list of options for booting

the Knoppix bootable image itself. If no options are selected, the boot prompt times out

and the Knoppix boot process proceeds with default values.

5. The linux kernel boots using /boot/isolinux/linux for the actual kernel file

(more familiar as /boot/vmlinuz-2.6.31.6 if it were part of a standard install) and

minirt.gz as the initial ram disk. Boot options (kernel optional parameters) are passed to

the OS (kernel) from the boot: prompt or from isolinux.cfg

6. The kernel unzips the minirt.gz file and the init script runs. Preconditions for

this script to run are: Kernel contains all drivers necessary to mount initial media, and

cloop.ko and aufs.ko are located in /mnt-system/"$knoppix-dir"/modules/ (Knopper,

2008)

The init script is a big one. It's over 700 lines long, and is written by Klaus

Knopper, a man who very obviously knows his BASH shell scripting and shorthand. Its

intricacies are not for the faint of heart, but it can be easily customized for this project.

See the Appendix section 12.2 for a detailed breakdown of this script.

7. The last thing the init script in minirt.gz does is call the base system's own

/sbin/init file, which is controlled by /etc/inittab. Knoppix uses its own inittab file which

is most likely very different from the /etc/inittab in your base system. When it comes

time to customize your own CD, the two files will be merged.

8. /etc/inittab specifies the default run level as run level 5. It calls

/etc/init.d/knoppix-autoconfig at the startup runlevel (rcS).

9. The knoppix-autoconfig script is another wonder written by Klaus Knopper

specifically for Knoppix. This script is over 600 lines long. The bulk of the script

defines functions which are then called in order towards the end of the script. See the

Appendix section 12.3 for a detailed analysis of this script.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 45	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

10. After knoppix-autoconfig runs from runlevel S (at system boot), control is

handed back to init and /etc/inittab. This starts sends the system into runlevel 5 and starts

all designated services along the way.

11. The script /etc/init.d/knoppix-startx is called from /etc/inittab as the system

enters run level 5, this script starts up the X server and window manager.

7. Applying Customized Knoppix Magic to Make Your
RIHCD

With a basic understanding of how Knoppix boots, the boot scripts and techniques

can be applied to the development station running your custom RIHCD install to make it

a bootable CD.

If you are not COMPLETELY satisfied with your RIHCD base install, now is the

time to go back and tweak it. Everything should be exactly how you want it, because it's

about to be burned to a read-only CD.

As shown above, most of the Knoppix magic happens at boot time, and is

controlled by files in the /boot directory of the CD. This is why the RIHCD base system

has a separate partition for /boot, it's going to be replaced with the Knoppix /boot files

that have been customized for your install.

7.1. Preparing the Mastering Environment
If the RIHCD development system is running, go ahead and shut it down, then

reboot it from a Knoppix 6.x CD. No GUI is needed for any of these steps, so you may

want to boot with the "knoppix 2" option, which defaults to the command line only run

level 2.

Once booted, run the following commands to prepare the mastering environment:

mkdir /base_install

mkdir /extras

mkdir /rihcd_devel

From the installation of Debian on the development system in section 2, my hard

drives are partitioned as follows:

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 46	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

/dev/sda1 /boot

/dev/sda2 swap

/dev/sda3 /

/dev/sdb1 /rihcd_devel

/dev/sdb2 /extras

Mount your partitions and create a couple of new directories for mastering (the

base install or development partition is mounted read-only to preclude accidental file

overwrites or deletions):

root@Microknoppix:~# mount -o ro /dev/sda3 /base_install/

root@Microknoppix:~# mount /dev/sdb1 /rihcd_devel/

root@Microknoppix:~# mount /dev/sdb2 /extras/

root@Microknoppix:~# mkdir -p /rihcd_devel/knoppix/source/KNOPPIX

root@Microknoppix:~# mkdir -p /rihcd_devel/knoppix/master/boot

root@Microknoppix:~# mkdir -p /rihcd_devel/knoppix/master/KNOPPIX

root@Microknoppix:~# mkdir /extras/knoppix_magic

Copy all of your RIHCD development system from /base_install/ to

/rihcd_devel/knoppix/source/KNOPPIX (this step will take several minutes to complete)

(Neggus, 2007):

root@Microknoppix:~# cp -Rp /base_install/* \
/rihcd_devel/knoppix/source/KNOPPIX/

root@Microknoppix:~# cd /rihcd_devel/knoppix/source/KNOPPIX/

root@Microknoppix:/rihcd_devel/knoppix/source/KNOPPIX# ls

bin cdrom etc initrd.img lost+found media opt root selinux
sys usr vmlinuz

boot dev home lib mass_passwds mnt proc sbin srv
tmp var

7.2. Cleaning Up the Base System Before Mastering
A little housekeeping is required to prepare your custom Debian install for its

eventual life as a Live CD. Consider that space is a premium, so any leftover cruft

should be cleared out. This means any .deb files leftover from package installation

should be removed, as well as accumulated log files. You may also wish to remove any

shell history files or history files from other applications (e.g. ~/.lesshst, ~/.viminfo,

etc.)

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 47	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

If you had scratch space or working directories on your development system

(rihcd_devel/ and extras/) remove them from the RIHCD base source:

root@Microknoppix:/rihcd_devel/knoppix/source/KNOPPIX# rmdir
rihcd_devel/ extras/

root@Microknoppix:/rihcd_devel/knoppix/source/KNOPPIX#

If you didn't already run "apt-get clean" when booted in your base install system,

you can run it now and specify the non-default cache directory as a command line option:

apt-get clean -o \
dir::cache=/rihcd_devel/knoppix/source/KNOPPIX/var/cache/apt/

Log files can be removed simply by deletion, but beware: if your customized disc

includes services that log to /var/log, but do not use syslog (e.g. freshclam by default),

these services may fail to start if their log files are not present for appending. (This

problem with freshclam can be fixed by editing /etc/clamav/freshclam.conf)

You should delete the xorg.conf file from the development system source,

otherwise Knoppix will assume that this is the configuration to be used when starting the

GUI, and won't create a new file via the mkxorgconfig script.

rm /rihcd_devel/knoppix/source/KNOPPIX/etc/X11/xorg.conf

Since the base system as CD will be running the 2.6.31.6 kernel that comes with

Knoppix, you will need to move all 2.6.31.6 kernel modules into your source. The

existing 2.6.26 kernel modules will not be needed, so they can be removed at this time,

saving additional space on the CD.

cd /rihcd_devel/knoppix/source/KNOPPIX/lib/modules/

rm -rf 2.6.26-2-686

mkdir 2.6.31.6

cp -av /lib/modules/2.6.31.6/. 2.6.31.6/

If you don't want to leave your .bash_history file around to be burned to CD for

all to see, go ahead and nuke those too:

cat /dev/null
>/rihcd_devel/knoppix/source/KNOPPIX/home/handler/.bash_history

cat /dev/null >/rihcd_devel/knoppix/source/KNOPPIX/root/.bash_history
(if present)

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 48	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

It’s very likely that you’ll be repeating this housekeeping process as you fix errors

or otherwise tweak your Live CD. Consider putting all of these steps into a single shell

script to speed this process in the future.

7.3. Creating the Base System Compressed Loopback File
Once the development system is cleaned up, it can be compressed into the main

KNOPPIX cloop file (/KNOPPIX/KNOPPIX on the final CD).

To do this, the mkisofs command is used with the following switches and

arguments, specific for this development environment (Neggus, 2007):

mkisofs -R -U -V "RIHCD Base" \

 -publisher "I Handler" \

 -hide-rr-moved -cache-inodes -no-bak -pad \

 /rihcd_devel/knoppix/source/KNOPPIX \

 | nice -5 /usr/bin/create_compressed_fs - 65536 > \

 /rihcd_devel/knoppix/master/KNOPPIX/KNOPPIX

See the man page for mkisofs for an explanation of what each command line

switch is for.

create_compressed_fs is part of the cloop_utils package, responsible for taking

the output of mkisofs and compressing it to a cloop file.

Running this command will consume all available system resources, not to

mention quite a bit of your time, depending on the specs of your mastering station. This

command should be written to a file and made executable so that it can be run time and

time again without typing it in manually.

Running this against the example RIHCD development system took the base

install of around 1 GB and slimmed it down to a 372 MB cloop file.

Now copy the contents of the Knoppix /boot directory into your mastering area:

root@Microknoppix:/rihcd_devel/knoppix/master/boot# cp -rv /mnt-
system/boot/* .

root@Microknoppix:/rihcd_devel/knoppix/master/boot# cd isolinux/

root@Microknoppix:/rihcd_devel/knoppix/master/boot/isolinux# ls

balder.img boot.cat boot.msg f2 f3 german.kbd isolinux.bin
isolinux.cfg linux logo.16 memdisk memtest minirt.gz

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 49	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Also copy the aufs.ko and cloop.ko kernel modules that will be needed at boot

time, as well as the GPL version 2 license file:

root@Microknoppix:/rihcd_devel/knoppix/master/KNOPPIX# mkdir modules

root@Microknoppix:/rihcd_devel/knoppix/master/KNOPPIX# cp -v \

/mnt-system/KNOPPIX/modules/* modules/

root@Microknoppix:/rihcd_devel/knoppix/master/KNOPPIX# cp -v \

/mnt-system/KNOPPIX/LICENSE.txt .

7.4. Editing isolinux.cfg to Customize or Remove Boot Options
How much of the original Knoppix boot functionality you remove is up to you.

Knoppix boots using Isolinux (http://syslinux.zytor.com/wiki/index.php/ISOLINUX)

which is controlled via the isolinux.cfg file. This file specifies the default boot options

such as whether or not a boot prompt is offered, how long to pause at the prompt before

booting, where to display help and welcome messages, and which kernel to use with

which kernel options. Open this file in a text editor and take a look around.

If you never plan on using a German keyboard, you can remove the german.kdb

file. Likewise, if you don't want end users to be able to perform a memory test, you

could remove the memdisk and memtest files; the same goes for booting into FreeDOS.

If you do remove this functionality, make sure to edit the f2 file to remove any references

to these boot options.

If you want to disable these extra boot functions, you will want to comment out

these boot options from the isolinux.cfg file as well:

#LABEL memtest

#KERNEL memtest

#APPEND foo

#LABEL dos

#KERNEL memdisk

#APPEND initrd=balder.img

Generally speaking, there's not much usefulness in removing functionality. Most

useful customizations would be along the lines of removing the boot prompt (PROMPT

0) if building a non-interactive CD, or adding additional help screens (like those accessed

by hitting F2 or F3 at boot). You may also find the need to pass specific kernel

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 50	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

parameters at boot time. Although this is unlikely, the APPEND line is where these extra

parameters would go.

For this example build, I'm leaving the isolinux.cfg file as is, and editing the files

that are called from it in order to change the boot behavior.

Pressing F2 or F3 at a boot prompt will still bring up the f2 and f3 help files, but it

can be useful to edit these files, if only to replace KNOPPIX with your own brand name.

An additional boot.msg file for an additional function key (e.g. f6_boot.msg) can

be created for more help screens, etc.

 You can specify optional boot parameters by editing the ”APPEND” lines, for

example to turn off using linux swap partitions with the noswap option . The range of

options that this config file can specify makes it a fun file to hack on.

7.5. Editing the boot.msg file to Customize the Start Up Splash
Screen

In addition to editing the f2 and f3 files, the boot.msg file should be edited to

reflect that this is your own custom install, and the logo.16 file should be changed so that

the boot process displays your own snappy splash screen instead of Klaus Knopper's.

The boot.msg file from Knoppix 6.0.1 looks like this:

^O17^L^Xlogo.16

KNOPPIX V6.0.1 http://www.knoppix.de/
 RELEASE: 2009-02-08

The control characters (^O17^L^X) specify screen colors and call for the logo.16

file to be displayed, followed by the version of Knoppix, its web site and release date for

this version. (Neggus, 2007)

To use your own image file, rename the logo.16 file to back it up, and fire up your

favorite image editor. (This example will use GIMP from Knoppix 6.0.1.) Find a

favorite image that will look good in 16 colors at 640x400 or so. You'll have a 640x480

space to display your image, but if you don't use the whole 480 pixels in height, you'll be

able to show some text below your image without pushing your image off the screen.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 51	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Here are the steps I used in GIMP to create my custom logo.

1. Open the image in the GIMP.

2. If it's not already scaled to the right size, select Image->Scale Image and scale

it down to around 640x400.

3. Set the color palate to 16 colors by selecting Image -> Mode -> Indexed.

Select “Generate optimum Palette” at 16 colors, then click Convert.

4. To save the file as a .ppm file, select File -> Save As Make sure that the

“Select File Type” is set to “By extension” and save your file with a .ppm extension.

5. Run the ppmtolss16 Perl script to take your .ppm file as input and spit out a

new_logo.16 as output:

ppmtolss16 < yerfile.ppm > logo.16

6. Copy the new logo.16 file into /extras/scratch_space/boot/isolinux/

7.6. Unpacking minirt.gz to Edit and Customize the init Start Up
Script

The next fun file to hack on is the init file in the compressed file minirt.gz.

Here are the steps needed to open the compressed file for access to the init file

(Bleßmann, 2009):

gunzip -c /mnt-system/boot/isolinux/minirt.gz >/tmp/minirt

mkdir /tmp/miniroot

cd /tmp/miniroot

cpio -idmv -I /tmp/minirt

ls

vim init

Recall that the init file runs at boot time, just after the kernel boots and mounts all

disk images into the unionfs. This file is a big hairy beast and for anyone but the very

knowledgeable and patient, most of its contents are best left as is.

There are a couple of minor edits that can be made for your environment. For

example, to brand your CD:

Line 11: DISTRO="RIHCD"

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 52	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Mount any disk partitions read-only (this could also be accomplished by adding

"forensic" to the list of boot parameters via the APPENDS line in isolinux.cfg):

Line 283: RW=”ro”

Once you're done making edits, to recompress this initial ram disk back to a

minirt.gz file, run the following:

cd /tmp/miniroot

find . | cpio -o -H newc > /tmp/minirt.new

cd /rihcd_devel/knoppix/master/boot/isolinux

gzip -9 -c /tmp/minirt.new > minirt.gz

If you are knowledgeable and patient, the init script has a ton of potential for

hacking and additional customization. For the purposes of this paper, I'm changing only

the bare minimum required for branding and booting the base system.

7.7. Editing Initialization Scripts Outside of /boot
Once the initial ramdisk init script finishes running, all file systems are

mounted, then the /etc/inittab file is run, calling all of the other system initialization

scripts (knoppix-specific and otherwise) along the way.

To edit the knoppix-specific files that are outside of /boot, create a new working

directory, e.g. /extras/knoppix_magic and copy all knoppix-specific scripts and files into

this directory. At a minimum, these files are:

/etc/inittab

/etc/init.d/knoppix-autoconfig

/etc/init.d/knoppix-startx

/etc/init.d/knoppix-halt

/etc/init.d/knoppix-reboot

/sbin/hwsetup

/sbin/mkxorgconfig

/usr/sbin/rebuildfstab

/usr/bin/flash-knoppix

(Note that Klaus Knopper has written a multitude of other scripts and utilities,

many of which are distributed within Knoppix, but are not absolutely necessary for

system booting and hardware configuration. See http://debian-knoppix.alioth.debian.org)

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 53	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

The files listed above should be copied into the destination directory with the full

source path intact, so that you eventually have /extras/knoppix_magic/etc/init.d/knoppix-

autconfig etc. Using the --parents switch for the cp command will do this:

mkdir /extras/magic_knoppix

cp --parents /etc/init.d/knoppix-* /extras/knoppix_magic/

cp --parents /etc/inittab /extras/knoppix_magic/

…

7.7.1. Editing the /etc/inittab File

One of the last things that the init script from the initial ram disk (minirt.gz) does

is call the base system's own /sbin/init, which is controlled by the base system's

/etc/inittab file.

Lines 703-725 of this init script handle how the inittab file is copied, based on

whether the “adriene” or “secure” boot options are given. The base install system that

I've described has neither the inittab.adriene or the inittab.secure files, so this part of the

init script uses the only inittab file it can find, that of the base system (after all disk

images are mounted into the unionfs). To add the Knoppix inittab functions to your own

inittab file, copy your base system inittab file to inittab.bak, and edit the original. (The

.bak file will not be burned to the CD. See section 7.7)

cd /rihcd_devel/knoppix/source/KNOPPIX/etc/

cp inittab inittab.bak

vim inittab

Edit the following lines to read:

id:5:initdefault:

si::sysinit:/etc/init.d/knoppix-autoconfig

And add a section to automatically start X via /etc/init.d/knoppix-startx:

X mode

x0:5:wait:sleep 2

x1:5:respawn:/etc/init.d/knoppix-startx start >/dev/console 2>&1

Add a section to handle shutdown or reboot with knoppix scripts:

Halt or Reboot

z0:0:wait:/etc/init.d/knoppix-halt

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 54	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

z6:6:wait:/etc/init.d/knoppix-reboot

Note that a big difference between the inittab file that Knoppix uses and the one

that your Debian base install uses is that Knoppix does not call the SystemV init scripts

(see lines 22-31 of the knoppix /etc/inittab file). In the case of the RIHCD, it makes

sense to use these init scripts, since there is a wide range of services that need to be

started (e.g. SSH, freshclam, etc.). See Appendix A for a listing of the /etc/inittab file

used in this example RIHCD.

7.7.2. Editing the /etc/init.d/knoppix-autoconfig Script

The knoppix /etc/inittab starts system services by running the knoppix-autoconfig

script at runlevel S, system initialization time, instead of running the scripts in /etc/rcS.d

in your base system.

Opportunities for extensive customization of your CD via the knoppix-autoconfig

script are abundant but are best left for those with experience writing BASH scripts. A

few minor edits are called for, however:

vim /extras/knoppix_magic/etc/init.d/knoppix-autoconfig

Line 290: Set your time zone accordingly, eg:

TZ="America/Chicago"

Comment out line 458 and 459 because with syslog-ng there is no /sbin/klogd, nor

is there a /sbin/syslogd. If we attempt to start syslog-ng at this point, it will fail since it

has no network connectivity yet.

#/sbin/klogd -c 1 -x

#[-r /etc/syslog-knoppix.conf] && /sbin/syslogd -f /etc/syslog-
knoppix.conf || /sbin/syslogd

This should be the bare minimum that needs to be done to this file to make it

customized for the RIHCD application.

7.7.3. Editing the /etc/init.d/knoppix-startx Script

Once the system hits runlevel 5, the /etc/init.d/knoppix-startx script is called.

This script does what it advertises, but it makes a few assumptions that won't apply to the

RIHCD. To make it behave properly, edit lines 32-34 to read:

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 55	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

USER="handler"

GROUP="handler"

SESSION="fluxbox"

Also, edit line 46 to replace “startlxde” with “startfluxbox”:

type -p "$STARTUP" >/dev/null 2>&1 || STARTUP="startfluxbox"

Now is a good time to make sure that the /etc/X11/Xwrapper.config has the

following line:

allowed_users=anybody

If it's set to "allowed_users=console", the knoppix-startx script won't be able to

start the X server.

7.8. Creating the Knoppix-Specific Compressed Loopback File
Recall that the init shell script contained within /boot/minirt.gz file is what

mounts the main KNOPPIX cloop file (/KNOPPIX/KNOPPIX) into the union filesystem.

[See lines 615-643]. Take a closer look at this function, and you'll see that it also looks

for and mounts any /KNOPPIX/KNOPPIX[0-9] files into the union file system as well.

Each KNOPPIX cloop file is mounted “on top” of the previously mounted KNOPPIX

cloop file. So, KNOPPIX3 would be mounted “on top” of KNOPPIX2 which would be

mounted on top of KNOPPIX, etc. Overlaid on top of all of these in the union file system

would be the read/write ramdisk.

This little bit of forward thinking and modular design is a gift for anyone who

wants to hack on their own Live CDs and produce multiple flavors of the same base

system. Not only do you have the option of including additional software by including an

extra KNOPPIX cloop file, but you can actually put all of the knoppix-specific startup and

shutdown scripts in their own KNOPPIX cloop file.

If you have the development system compressed into the KNOPPIX cloop file in

/KNOPPIX/KNOPPIX on the CD, and you have all of your knoppix-specific scripts (e.g.

/etc/init.d/knoppix-autoconfig etc.) in a compressed cloop file called KNOPPIX1,

the init script will mount the cloop files into the union files sytem, overlaying the

knoppix-specific scripts on top of the base install.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 56	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

It is this modular separation of functionality that makes it possible to take any

modestly sized base Debian install and make it into a Knoppix-based Live CD.

After the files in section 7.5 are edited and saved, you can use the same process to

generate the cloop file for them that was used to create the cloop file for the base install:

/usr/bin/mkisofs -R -U -V "RIHCD" \

 -publisher "I Handler" \

 -hide-rr-moved -cache-inodes -no-bak -pad \

 /extras/knoppix_magic \

 | nice -5 /usr/bin/create_compressed_fs - 65536 > \

 /rihcd_devel/knoppix/master/KNOPPIX/KNOPPIX1

 Since there's much less data to be compressed compared to the base system

cloop file, this process will be very speedy.

8. Putting the CD in RIHCD
Once the KNOPPIX cloop file for the base install has been created, as well as the

KNOPPIX1 cloop file for knoppix-specific files and scripts (as well as any other desired

cloop files for optional software, etc.), the final CD can be burned.

At this point, the /richd_devel/knoppix/master/ directory should look like this:

root@Microknoppix:/extras/scripts# ls -R /rihcd_devel/knoppix/master/

/rihcd_devel/knoppix/master/:

KNOPPIX boot

/rihcd_devel/knoppix/master/KNOPPIX:

KNOPPIX KNOPPIX1 LICENSE.txt modules

/rihcd_devel/knoppix/master/KNOPPIX/modules:

aufs.ko cloop.ko

/rihcd_devel/knoppix/master/boot:

isolinux

/rihcd_devel/knoppix/master/boot/isolinux:

balder.img boot.msg f3 isolinux.bin linux logo.16.bak
memtest

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 57	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

boot.cat f2 german.kbd isolinux.cfg logo.16 memdisk
minirt.gz

8.1. Generating SHA1 Sums for CD Integrity Checking
The “testcd” boot option will calculate SHA1 hashes for all files listed in the

sha1sums file and compare them against the previously generated hash in that same file

in order to ensure that no files are corrupted. To generate this list of hashes, run the

following commands (Neggus, 2007):

cd /rihcd_devel/knoppix/master

find -type f -not -name sha1sums -not -name boot.cat \

 -not -name isolinux.bin -exec sha1sum '{}' \; > KNOPPIX/sha1sums

At this point, the boot.cat and isolinux.bin files for this CD have not yet been generated,

so they should be excluded from hash checks.

8.2. Creating the Final .iso Image
Once all of the pieces are put together, actually creating the CD is pretty easy.

The following commands will generate the final .iso image (Neggus, 2007):

cd /rihcd_devel/knoppix/master

mkisofs -pad -l -r -J -v -V "RIHCD" -no-emul-boot -boot-
load-size 4 \

 -boot-info-table -b boot/isolinux/isolinux.bin \

 -c boot/isolinux/boot.cat -hide-rr-moved \

 -o /rihcd_devel/knoppix/rihcd.iso /rihcd_devel/knoppix/master

See the mkisofs man page for full details on what the command line switches do.

The resulting .iso file, /rihcd_devel/knoppix/rihcd.iso can be transferred from the

development system using a variety of methods, e.g. FTP, netcat, SSH, etc.

Actually burning the .iso image to a CD is left as an exercise for the reader, since

everyone has their own favorite software/system for burning.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 58	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

9. Additional Projects and New Directions for RIHCD
Once the RIHCD has been successfully created, any number of variations and

additional customizations are possible.

9.1. Additional Software to be Accessed Without Booting from
the RIHCD

Any files that are placed in /rihcd_devel/knoppix/master/ can be accessed from

the CD in a running system (not already booted from the RIHCD). This can be a good

spot for documentation, or additional utilities for analyzing a potentially compromised

system that has not yet been rebooted.

9.1.1. Microsoft Sysinternals

For a CD that is designed to be used interactively by on-site incident handlers,

including all of the Windows Sysinternals tools (http://technet.microsoft.com/en-

us/sysinternals/default.aspx) in this directory will allow analysts to run system analysis

tools on a live, running system. There is a great deal more information that can be

gleaned from a running system than from one that’s been rebooted.

9.1.2. Statically Linked Linux Binaries

Statically linked binary files of common Linux commands burned to a read-only

medium are incredibly useful tools to analyze a compromised Linux system for rootkits.

Statically linked binaries do not rely on possibly corrupt libraries on the host system, and

instead, have all necessary code compiled directly into the executable binary file.

Installing rkhunter (http://www.rootkit.nl/projects/rootkit_hunter.html) with all of its

requisite tools (e.g. dd, ls, w, tcpdump, lastlog, less, more, cat) makes a great addition to

this CD. A good guide to creating these binary files is provided by David Hoelzer, at

http://enclaveforensics.com/Blog/files/b85f4d072b82d7183c144ce38d634229-18.html

9.2. Putting RHICD on a USB Thumb Drive
The Knoppix 6 CD comes with the flash-knoppix script, which will install the

contents of the Knoppix CD to a USB thumb drive, or other media. This script relies on

the following Debian packages which may not be installed on your RIHCD development

system: syslinux, diaglog, and sfdisk. It also relies on ms-sys, which can be obtained

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 59	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

from http://ms-sys.sourceforge.net. As more and more systems are bootable from

removable media such as thumb drives, this makes a great way to keep your custom

incident handling system with you wherever you go.

9.3. Making the RIHCD an Automated Incident Analysis Disc
By combining the disabling of the boot prompt in the isolinux.cfg file with a

careful implementation of initialization scripts and system analysis scripts, a CD can be

created which neither requires nor accepts any user input from the console, runs a series

of analytical tools, and reports the findings back to the Mothership system.

9.4. Making Modular Packages of Optional Software for RIHCD
The same methods to create the compressed loopback (cloop) file of knoppix-

specific scripts in section 7.2 can be used to create additional cloop files containing

optional extra software. For example, install your favorite suite of pen-testing tools to

/opt and then use mkisofs and create_compressed_fs as shown in section 7.2 to create a

/KNOPPIX/KNOPPIX3 file that can be optionally included with the RIHCD base

system.

9.5. Running a Squid Proxy on the Mothership System
In well-managed network environments, the IP addresses of compromised

systems are put into a quarantine network where they are unable to reach the Internet

(and conversely, the attacker on the Internet can no longer reach the compromised

system). To provide web access to compromised systems running the CD in the

quarantine network, set up a Squid proxy server (also in the quarantine network, but

allowed to send traffic out) and configure the web browser on the CD to use this proxy.

To avoid abuse of the proxy, enable logging, configure the proxy to require

authentication and only allow access to a whitelist of URLs.

10. Conclusion
Live CDs such as Knoppix can be valuable tools for post-mortem analysis of

compromised systems, but they can be restrictive because of the limited number of

forensic or analytical tools included. Even forensic-specific Live CDs like Helix, which

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 60	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

provides an extensive collection of analytical software, is useless when the compromised

system is not immediately physically accessible.

Any experienced incident handler is going to have his or her own favorite

collection of software and scripts for system analysis. Aggregating all of these tools in a

custom Linux install is something that typically happens over time as the incident handler

maintains their own workstation, or jump bag. Making this collection of tools remotely

deployable solves the problems of analyzing compromised systems that are physically

unreachable by the incident handler. Making the remotely deployable suite of tools

remotely accessible by the incident handler solves the problem of directly accessing a

compromised system that is on a NAT network.

Knoppix implements a unique combination of initialization scripts and kernel

modules (cloop and aufs) that make a modestly sized Linux system fit onto a bootable

CD that can be run without any local hard drive interaction.

The methods used by Knoppix, especially Knoppix 6.x, are modular enough to be

applied to virtually any customized Debian GNU/Linux install, making a custom

bootable system that can be deployed as easily as downloading and burning a .iso file.

While there are limits to what can be done with a bootable CD, either because of

space constraints or network restrictions, many of these limits can be circumvented by

incorporating an additional networked system that is reachable by systems booted from

the CD.

If the operating system on the custom CD can use SSH to login to this dedicated

system, then remote port forwarding can be used to enable access, both command line

and GUI, back to the system running the CD, even if it is on a NAT network.

Additionally, the dedicated system can be used as a file repository, both for the results of

analytical scripts to be uploaded from the compromised system, as well as for software

packages and new analytical scripts to be downloaded from the bootable CD when it

starts up.

The tools and techniques employed by Knoppix to make it a bootable OS are as

open to hacking and customization as Linux itself, and provide a rich starting point for an

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 61	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

inspired systems hacker to build multiple distributions of bootable systems for multiple

implementations.

11. References
Rankin, K (2005). Knoppix Hacks. Sebastopol, CA: O'Reilly Media, Inc..

Rankin, K (2008, May 1). Remaster Knoppix without Remastering. Retrieved from

http://www.linuxjournal.com/article/10075

Neggus, C (2007). Negus Live Linux Series Live Linux® CDs: Building and

Customizing Bootables. Boston, MA: Prentice Hall.

Debian GNU/Linux (2008), man page for shadow retrieved on Debian GNU/Linux 5.0

Medialogic S.p.A. (2009). NoMachine NX – Download: NX Free Edition for Linux.

Retrieved on 12 August 2009 from the NoMachine.com web site:

http://www.nomachine.com/download-package.php?Prod_Id=1079

Medialogic S.p.A. (2009). NoMachine NX – Documentation. Retrieved on 12 August

2009 from the NoMachine.com web site:

http://www.nomachine.com/documentation/admin-guide.php

Fourdan, O (n.d.). Xfce - Desktop Environment. Retrieved on 28 August 2009 from the

Xfce.org web site: http://www.xfce.org

BSD (2009), man page for sshd_config retrieved on Debian GNU/Linux 5.0

Schroder, C (2009). http://tuxcomputing.com/cookbook/mass_passwd. Retrieved on

August 08 2009 from the Tux Computing web site:

http://tuxcomputing.com/cookbook/mass_passwd

Srisuresh, P, & Egevang, K (2001, January). RFC 3022 - Traditional IP Network Address

Translator (Traditional NAT). Retrieved from http://tools.ietf.org/html/rfc3022

GNU (2004), man page for rbash retrieved on Debian GNU/Linux 5.0

Tessio, A (2009), man page for makejail retrieved on Debian GNU/Linux 5.0

BalaBit IT Security (2009). Syslog Server | Syslog-ng, Retrieved 14 August 2009 from

the BalaBit IT Security web site: http://www.balabit.com/network-

security/syslog-ng/

GNU (2006), man page for BASH retrieved on Debian GNU/Linux 5.0

Debian GNU/Linux (2006), man page for mkisofs retrieved on Debian GNU/Linux 5.0

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 62	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

Bleßmann, B (2009, April 22). Nabble - debian-knoppix - cd 6.0.1 mount problem

fromhd. Retrieved from http://www.nabble.com/cd-6.0.1-mount-problem-fromhd-

td23029838.html

12. Appendix
12.1. Debian Packages to Include When Building the RIHCD

Development System.
These tools will not be included as part of the minimal build, and should be

installed immediately after the installation process finishes. These tools can all be

installed from the command line using apt-get install packagename. Most, if not all

of these packages will have other packages that they depend on which must be installed

as well. When prompted to install these as well, it's safe to say yes.

sysv-rc-conf – For system tuning: turning init.d scripts on/off at boot

syslog-ng – The next generation of syslog (more on this later)

stunnel4 – Wraps TCP sessions in SSL

pwgen – For generating passwords

ntpdate – Set the date/time

openssh-server – For providing secure remote access

ClamAV – Open-source virus scanner

tcpdump – You love it

xterm – ‘Nuff said

wireshark – GUI packet sniffer

iceweasel – Non-Mozilla branded version of firefox

rdesktop – Windows Remote Desktop Protocol (RDP) client for Linux

xtightvncviewer – VNC client

xpdf-reader – PDF viewer

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 63	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

vim-full – Improved Vi (if that's your flavor)

emacs – Text editor preferred by some (you know who you are)

samba-common – For connecting to Windows SMB shares

smbclient – See above

rkhunter – Root Kit Hunter

python – Scripting language required by many tools

lynx – Text based web browser

links – Text based web browser that supports frames

ncftp – Necessary for installing perl modules via CPAN

dpkg-dev – Necessary for making your own .deb files from source

debhelper – See above

binutils – Includes “strings” command for finding ascii strings in binary files

arpwatch – Alerts on ARP shenanigans

sleuthkit – Open source forensic tool

autopsy – Web GUI for sleuthkit

k3b – CD burning software (optional, installs gobs of dependencies also)

curl – Used to grab files from HTTP, HTTPS, FTP servers (like wget)

dd_rescue – Copies data from one file (or block device) to another

ntfsprofs – NTFS utilities

whois – Get network registration information

telnet – Always nice to have

minicom – Serial terminal

ftp – FTP client

dosfstools – Utilities to create and check MS-DOS FAT file systems

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 64	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

foremost – Recover files using their headers, footers, and data structures

ghex – GUI hex editor

hexedit – Console hex editor

hfsplus – Tools to access HFS+ formatted volumes

hfsutils – Tools for reading and writing Macintosh volumes

ngrep – Grep for network traffic

parted – The GNU Parted disk partition resizing program

rsync – Synchronize files to/from remote/local copies

dialog – Used for displaying dialog boxes from shell scripts

syslinux – Used to create bootloader for RIHCD use on USB thumb drive

12.2. Analysis of Knoppix init Script
Below is an overview of the init script included in minirt.gz, each action is

followed by the [line-number] corresponding to its location in the init script:

- Set $DISTRO (e.g. KNOPPIX) [11]

- Set colors used during boot process [13-36]

- Specify where all knoppix files are located [41]

- Set localization - English or German? [45]

- Define system functions that are called later in this script [114-270]

- Mount /proc [276]

- Link /proc/mounts to /etc/mtab [279]

- Read command line parameters [281]

- mount /sys [290]

- Display welcome message [292]

- Load modules [299]

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 65	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

- Check to see if Terminal Service boot option is specified, if so, load NFS

modules, start up networking, and look for terminal server [301-423]

- Establish TOTALMEM & print kernel info [425-436]

- “Return existing device names listed as regular expressions” [438]

- Look for Knoppix root (check USB devices) [450-474]

- Run check_sha1sums if requested to test disc integrity [478]

- Create tmpfs /ramdisk [490]

- Copy to RAM? Copy to hard drive? [493]

- Define functions to run commands from /KNOPPIX directory on CD [503-

514]

- Define createdata() function; if booted from read/write media, prompt user

with dialog box asking to create persistent disk image (encrypted or not) [534-

573]

- Define mountdata() function to mount user-generated data file (knoppix.img

or knoppix.aes) if present, otherwise create using createdata() function [575-

613]

- Define mountknoppix() function to mount all found KNOPPIX cloop files

(e.g. /KNOPPIX/KNOPPIX, /KNOPPIX/KNOPPIX1, etc.). Note: This

function is critical and will be relied on when creating and mounting

additional cloop files for including optional extra software on your customized

CD [615-643]

- Define mountunion() function to mount disparate file systems into single

merged directory using aufs. This function always mounts the KNOPPIX

cloop file at the bottom of the stack of file systems in the union. [645-652]

- Set $PATH to include /bin in minirt.gz as well as

/UNIONFS/bin:/UNIONFS/sbin [671]

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 66	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

- “Link directories in order to create a writable system” -- moves existing

directories into the union, then removes the old directory handles [675-683]

- Mount /home into unionfs [687]

- Check for updates on disc (e.g. /KNOPPIX/update*.tar.gz) and install if

needed [691-700]

- Check for boot options for “secure” or “Adrianne” and handle moving

/etc/inittab file accordingly to specify different initialization scripts [702-725]

- Start init (the /sbin/init file in your development system) [738]

12.3. Analysis of Knoppix knoppix-autoconfig script
The bulk of this script is spent defining functions which are then called in specific

order towards the end of the script.

- Define functions

o checkbootparam() [17-24]

o progress() -- make progress bar happen [38-64]

o getbootparam() [66-78]

o startudev() [90-115]

o start_modules() [118-127]

o start_sound() [129-140]

o start_net() [142-158]

o start_swap() [160-167]

o netbook_specials() -- extra modules for eeepc (camera, wlan, cardreader)

[169-177]

o waitio() – wait for IO on system to settle down [180-187]

o start_services() [190-201]] -- turn on: dbus, hal, netbook_specials,

start_sound, checkbootparam "nfsdir" || start_net, start_swap

o bailout() [216-221]

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 67	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

o localize() [224-366]

o start_proc() – mount and tune /proc [373-384]

o check_start_debug() – did system boot with debug option? [386-389]

o check_root_fs() [391-393]

o check_start_splash() [395-400]

o start_sys() – mount /sys if not already mounted [402-405]

o start_clock() [407-412]

o check_installed() [414-416]

o start_hostname() [418-423]

o start_loopback() [425-427]

o start_fs() [429-454]

o start_log() [456-461]

o start_devpts() [463-466]

o start_hwsetup() [468-476]

o start_dbus() [478-481]

o start_hal() [483-486]

o start_acpi() [488-503]

Once the functions in used the script are defined, they are called in the following

order:

- start_proc [511]

- check_start_debug [514]

- check_rootfs [517]

- start_sys [520]

- start_clock [523]

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 68	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

- check_start_splash [526]

- check_installed [529]

- start_hostname [532]

- start_loopback [535]

- start_fs [538]

- localize [541]

- progress – starts the progress bar [544]

- start_modules [547]

- start_udev [550]

- start_log [554]

- start_devpts [557]

- start_hwsetup [560]

- start_dbus [563]

- start_hal [566]

- start_acpi [569]

- start_sound [572]

- start_services [574]

- wait for udev to complete [580]

- clear & end progress bar [586-591]

- run /KNOPPIX/knoppix.sh if present [602-608]

	

12.4. /etc/inittab Used by RIHCD
/etc/inittab: init(8) configuration.

$Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

The default runlevel.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 69	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

id:5:initdefault:

Boot-time system configuration/initialization script.

This is run first except when booting in emergency (-b) mode.

#si::sysinit:/etc/init.d/rcS

si::sysinit:/etc/init.d/knoppix-autoconfig

What to do in single-user mode.

~~:S:wait:/sbin/sulogin

/etc/init.d executes the S and K scripts upon change

of runlevel.

Runlevel 0 is halt.

Runlevel 1 is single-user.

Runlevels 2-5 are multi-user.

Runlevel 6 is reboot.

#l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

#l6:6:wait:/etc/init.d/rc 6

Halt or Reboot handled by knoppix

z0:0:wait:/etc/init.d/knoppix-halt

z6:6:wait:/etc/init.d/knoppix-reboot

What to do when CTRL-ALT-DEL is pressed.

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

Action on special keypress (ALT-UpArrow).

#kb::kbrequest:/bin/echo "Keyboard Request--edit /etc/inittab to let this work."

What to do when the power fails/returns.

pf::powerwait:/etc/init.d/powerfail start

pn::powerfailnow:/etc/init.d/powerfail now

po::powerokwait:/etc/init.d/powerfail stop

/sbin/getty invocations for the runlevels.

How	
 to	
 Create	
 a	
 Custom	
 Live	
 CD	
 for	
 Remote	
 Incident	
 Handling	
 70	

Bert	
 Hayes,	
 bhayes@infosec.utexas.edu	

The "id" field MUST be the same as the last

characters of the device (after "tty").

Format:

<id>:<runlevels>:<action>:<process>

Note that on most Debian systems tty7 is used by the X Window System,

so if you want to add more getty's go ahead but skip tty7 if you run X.

1:2345:respawn:/sbin/getty 38400 tty1

2:23:respawn:/sbin/getty 38400 tty2

3:23:respawn:/sbin/getty 38400 tty3

4:23:respawn:/sbin/getty 38400 tty4

5:23:respawn:/sbin/getty 38400 tty5

6:23:respawn:/sbin/getty 38400 tty6

X mode

x0:5:wait:sleep 2

x1:5:respawn:/etc/init.d/knoppix-startx start >/dev/console 2>&1

Example how to put a getty on a serial line (for a terminal)

#T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100

#T1:23:respawn:/sbin/getty -L ttyS1 9600 vt100

Example how to put a getty on a modem line.

#T3:23:respawn:/sbin/mgetty -x0 -s 57600 ttyS3

